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Preface

This report has been written in partial fulfillment of
Contract NAS 12-583 carried out by The Mathematical Sciences Group
with the support of OCTA at NASA's Electronics Research Center.

The goal of work performed under this contract is the
production of a digital computer program capable of identifying the
dynamic characteristics of a human operator from knowledge of input-
output data.

The component programs have been written and are documented
herein. A certain amount of experimentation has been done with self-
generated data corrupted by additive noise and the results of this

experimentation is also reported here,

We wish to take this opportunity to thank Dr. Richard Shirley

for the assistance which he has rendered by his interest and suggestions.
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Introduction

This report describes how the identification problem has been
approached in this work. Many of the details have been reported pre-
viously in Program Descriptions delivered to ERC. Several of these are
included as report appendices to provide complete information about all
aspects of the analysis and computation. The body report concerns itself

with the broader aspects of the system, referring to the appendices for

deeper study.

Chapter I describes the context of linear systems analysis in
which the problem is formulated, making specific our assumptions and

the conditions the identified system must satisfy.

Chapter II describes the mathematics involved in the two
basic subdivisions of the system-obtaining the iﬁpulse response by

projection onto a subspace, and obtaining a canonical realization from

the impulse response by application of the B. L. Ho algorithm.

Chapter III describes how these methods are mechanized as

computational techniques.

Chapter IV describes our preliminary results in system

identification.




Chapter I

Background and Problem Statement

The ultimate goal of this work is the identification of the
khuman operator in the sense that we wish to obtain a linear constant
dynamical system which best approximates the human input-output be-
havior in a particular job. In order to discuss the problem abstractly,
we will assume that the system to be identified actually is a linear

stationary dynamical system. By dynamical system we mean here a
completely controllable, completely observable, finite dinensional

system usually appearing as a set of differential equations relating

the state x(t) and the control u(t) by
X = AX + Bu

and an algebraic relation relating the state and the output or vector

of observables y(t) by
y(t) = Cx(t)

Thus, our dynamical system can be represented by the triple of constant
matrices [C, A, B]. As is well known, this representation is not

unique since any similarity transformation S of A gives a new

representation

[cs’l, SAs"l, SB].

We try to avoid this ambiguity by expressing the system in some

canonical form.




This set of equations has the solution

t
y(t) = Ce®x(0) + j ce Ty (1) dr.
0

Also characterizing this dynamical system is its impulse

response
H(t) = CetAB,

or its transfer function

pi.(S)

-1
H(s) = C(sI-A) "B = J H(t) =
qij(s)

The input-output relations sometimes appear in the form of

an integral equation
t
y(t) = J H(t-t)u(t)dr.
0

In all practical cases we define an additional variable z(t) which is

the state-dependent output y(t) corrupted by some "noise" v(t):
z(t) = y(t) + v(t).

These remarks serve to delineate the context im which our

problem is stated.

Problem 1: Given {z(t), u(t)}, defined on the interval [o, T1,

obtain a minimal realization [é, A, B] such that

T t AL
I l|z(t) - f ée(t—T)ABu(T)dr!!Zdt
0 0

is minimal.

This problem does not consider the effect upon z(t) of

initial conditions on the state at time zero. Therefore, it will



provide a good operating procedure only if x(0) is zero. Unfortunately,
it is impossible to place a human operator, such as a pilot, in zero-
state condition. Furthermore, such a technique would limit applications
of the program, since there are great advantages to examining some

part of a long data run rather than only its initial phase. For instance,
it allows the system, human or machine, to have a break-in or warmup
period before taking data for analysis. Furthermore, one could wish

to examine sequential data blocks in a long run to determine possible

low frequency nonstationarity.

The most straightforward assumption which will enable such

operations is:
Assumption: The system to be identified is asymptotically stable.

In addition we will proceed on the basis that the eigenvalues,
initial conditiomns, and inputs are such that there exists a time

t, < T such that for computation purposes

1

t
y(t) = j H(t-t)u(r)dt for t; st s T.
0
We now state the problem to be solved.

Problem 2: Given functions {z(t), u(t)} defined on the interval

[0, T), obtain a minimal realization [é, 3, ﬁ] such that
T t 2
o = f [lz(t) - f CeTAﬁu(t-r)dtllzdc
t 0

is minimal.

The norm ||*|| wused here is the usual Euclidean norm in

finite dimensional space.



In what follows the mathematical methods, their numerical
implementation, and recent numerical experiments will be described

and analysed in some detail,




Chapter II

Mathematical Methodology

Involved in Problem 2 are two distinct subproblems, solutions
to which we have programmed separately. The first is the definition
of an approximating kernel H(t) such that 02 of Problem 2, is

minimal.

The second is the definition of a system [é, ﬁ, B] such that,

approximately,
f(e) = Ge™ .

1. Obtaining ﬁ(t):

Without loss of generality, we restrict our discussion to

scalar kernel functions ﬁ(t).

The method used is basically a Rayleigh-Ritz procedure.
However, important modifications in both the theory and the numerical
techniques are implied by the fact that we are performing what, from
an engineering viewpoint, might be called a second-level approximation

problem. What is really desired is an approximation h(t) which

minimizes
et = r[[ﬁ(c) - n(o)|| %t .
0

But our problem constraints are such that we must be satisfied with

solving Problem 2.




Problem 2 is mathematically equivalent (see Appendix A,
sec. VII-4), under the restrictions about stability which we have

hypothesized, to minimizing

f1 51 ] ) )
j f (h(1) - h(1))Q(t,s)(h(s) - h(s)dsdt = [|h - hllQ .
0/ 0

Here

T
Q(t,s) = J u(t-t)u(t-s)dt
1

is a nonnegative definite symmetric kermel which is singular if u(t)
is a band-limited function.

If nothing else, the digital implementation which we use
would serve to band-limit u(t) by the sampling theorem. Fortunately
the singularity of Q does not seem to be a serious practical problem.
The nonsingularity of Q is a measure of the amount of information
about h(t) which is present in 2z(t). This is independent of noise,
of course, and our experiments with noise-free data indicate that

our present signal

10
u(t) = %-+ kzlck sin kwt , Ickl =1 (2.1)

is adequate for our purposes.

Returning therefore, to our Rayleigh-Ritz procedure for
Problem 2, we assume that a set of functionms {zi(t)}§ are available
such that for each h(t) of interest, there exists a linear combination
K
A(t) = 1 8.8, (%)

k=0

with llh(t) - h(e)]]

satisfactorily small.



This representation of ﬁ(t) being decided upon, 62 is

minimized with respect to the vector

That is we compute

. t K t ‘
z(t) = j h(t)u(t-t)dt = [ 8, f 2, (D)u(t-1)dt
0 k=0 0

and minimize

T . 2
J lz(t) - z(e) | “at (2.2)

¢

by manipulating 8.

Defining a new set {fi(t)}§ of functions by
t
fi(t) = J li(r)u(t-r)dt
0
we find that the equation to be solved in the least square sense is

kgoskfk(t) = z(t) t,sts T.
Under very general conditions on {li}i and u(+) (Appendix
A, section VII-3) we can show that {fk(t)}§ is a linearly independent
set and there exists, therefore, a unique minimum of (2.2).

The result on linear independence cannot be stated briefly,

but for

10



% M
u(t) = sin ket, I # 0
k=lak k=1ak

then, usually, the set {fi}§ will be linearly independent if
K+1sg2M
K .
and {Ei}o is linearly independent.

A more detailed discussion of the effects of K and M
is contained in Appendix A section VII-4. However, M = 10 appears
to be adequate for our purposes if we can indeed obtain a satisfactory
approximation with the given K + 1 functions {Zi(t)ji.

This is rather a serious stumbling block at present for
reasons associated with the numerical computations. These are set
forth in Chapter III.

A complete description of the program used to obtain ﬁ(t)

is contained in Appendix A.

2. Obtaining [é, A, ﬁ] from h(t):

The B. L. Ho method is used to obtain the system representation
from the impulse response. This is done either directly from the

Taylor coefficients of ﬁ(t) or indirectly by using the values of h

ar
—

at fixed time intervals to generate a system representation [6, 5,
of the discrete system and then taking the logarithm of that system
to obtain the continuous system (C, A, B]. The present description
will be confined to the single-imput, single-output case because this

is where our experience lies. In section 1. of this chapter, this

restriction was made without loss of generality. Here it is a serious

11



restriction, and programs are being modified to handle the multi-input,

nulti-output situation.
A complete proof of the single-input, single-output Ho pro-
cedure may be found in Appendix B, section VII-1l. The method will be

outlined only briefly here.

A sequence {ak} is said to be of rank less than or equal

. . t
to n if it can be generated from n-vectors ¢ and b and an n B

order matrix A by the rule

ak = cAk_lb .

The B. L. Ho procedure takes a sequence (of finite rank),
determines its rank, and exhibits the matrices [c, A, b].

For h(t) = cetAb, the sequence

b, = h((k-1)8) = ce(K-1)8A _  (SAyk-1y

satisfies the above condition and the Ho procedure will therefore give

SA

a discrete system similar to [c, e, b]. This can then be transformed

to a continuous system similar to [c, A, b].

On the other hand, if we expand h(t) in its Taylor Series
h(t) = } Z—lftk
k=0
then a = cAk—lb

forms a sequence which satisfies the given condition and leads directly

to a system similar to

[c, A, D] .

12



Generation of a, from h(t) involves high order differentiation
which is well known to be a poorly-conditioned operation on experi-
mental data. Both procedures are available; however, we have obtained
better results with the sampled impulse response than with the Taylor
Series even for low order systems and expect this to hold even more
strongly for higher-order system.

The program implementing the B. L. Ho procedure (MICARE) is
described in appendix B, the system logarithm program (CPC) is described
in Appendix C. These two virtually complete the procedure; we have
omitted the very simple routines describing how the saméled impulse
response is obtained from the coefficients {Bi}i. Input to MICARE

is a sequence as described above.

13




Chapter III

Computation

The mathematics described in Chapter II is very straight-
forward and the implementation should be very simple. This turms

out to be untrue because of computational difficulties, especially in

the presence of noise.

We first consider the noise-free case and examine the first

problem: What should be the set of basis function {li(t)}i ?

1. The Approximating Set

By our fundamental assumption, all h(t) under consideration
~ will decay to zero. It was felt therefore that the functions of the
set {zi} should also satisfy this condition. This ruled out fourier
approximation and the usual polynomial approximatioms.

Several sets of appropriate functions appear in the engineering
literature (see W. H. Kautz, Transieat Synthesis in the Time Domain,
IRE Transactions-Circuit Theory, September 1954, pp 29-39). Of these,
the laguerre functions were chosen for two major reasons. They can
be generated economically by using their recursion relations and the
analysis of their approximations properties has been very clearly
performed (J. W. Head, Approximations to Transients by Means of
Laguerre Series, Proc. Cambridge Philosophical Society, October 1956,

pp 640-651).

A few facts about the laguerre functioms will make the

subsequent discussion more readily understood.

14



For arbitrary (real positive) p, the first few functions

are:

2 () = /2p e FF

zl(t) = /E; e-pt(Zpt - 1)

2,(8) = VIp & PE(2p?t? - dpt + 1)

24(t) = /EE'e-ptc% o3t3 - 6p%t? + 6pt - 1)

O = /5 P 1830 L 12y

ls(t) = /EE e—pt(f% pst5 - %?’p4t4 + %?‘p3t3 —20p2t2 + 10pt - 1) .

The initial value is +v2p, zk(t) has k relative extrema of
decreasing magnitude, and zk(t) for p =1 is computationally zero

at 2k + 7. The most serious oscillations of zk‘ occur near zero,

-(ZkFDPt  popie 1

. . . . -At
shows the percentage error in Simpson's Rule integration of e

where zk(t) behaves, to first order, like e

for various numbers of integration intervals per time constant. (To
avoid confusion here, by integration interval, we mean the interval
between function evaluations, which is half of what is usually called
the integration interval in Simpson's Rule.)

Assuming that we wish to integrate with a relative error

of about 10-4, we see that the integration interval § must satisfy

1

§ < 7 7p(zxD) °

In addition, to satisfy the decay property, lk(t) =0 for t> 5

~we must have tl > 2K+ 7 for p=1. Since p represeants a linear

15



time scaling, we may solve these relations for p =1 and then modify

. . . 1 .
the integration interval by a factor of ;u This means that

1

<-2.—7-(_2_I-(+_1)-’ t, > 2K+ 7 .

8 1

In the computer program, the parameters determining t, are § and

INTST, the number of points omitted from fitting, by the relation

tl = (INTST-1)*¢§

Putting these together we find that

1 5§ 3 2K+7
2.7(2K+1) ~ * (INTST-1) °

Solving this for K, and & gives the following table

K INIST- $

0 19 .37

1 73 .123

2 150 .074
3 250 .0525
4 366 .041
5 510 .034
6 670 .028
7 856 .025

8 955 - .022

At this point the hard facts of computer size intrude. We
are at present limited to consideration of the function at 1600 points.

It seems wasteful to devote less than half of these to the fitting

interval.

In the light of all these factors, we have chosen

K =6
§ = .025
INTST = 800

as our working parameter set.
16



For completeness we must also ask if this integration interval
is adequate to integrate the input satisfactorily.

For reasons which are explained in Appendix A, section 4,
the fundamental period appearing in the input should equal the fitting

T-t
interval T - tl' Therefore, the shortest period will be 10 and

have 80 points used for integration. The following table shows relative

error in integrating sinusoids by Simpson's Rule, showing that we are

easily within our desired error of 10_4.

Intervals/period Relative error
4.7%
.23%
-4
12 4.3 « 10
16 1.3 - 107%

The selection of parameters having been made, we must examine
the systems which can be approximated satisfactorily. For this we

refer to Head's paper, op.cit., to find that for arbitrary « and p,

®© k
-at _ ¥2p p-a .
€ B a+p kzo (p+a) jz'k( )

Of course p, the eigenvalue of the laguerre functions is

positive (or has positive real part) in our application, so this

series is convergent iff o has positive real part, i.e., if our

fundamental assumption of asymptotic stability is satisfied. However,

we limit the series to seven terms; therefore, to satisfy our arbitrary

relative error (approzimately four significant digits)

desire for 10-4

we must have

atp

17



This implies that

2
&Pt . 10 3 = 0.215 .
Ot.+p

The points o which satisfy

i

a-p
otp

=T

lie on a circle of radius

and center
L
l-r2 )

Unfortunately this doesn't cover nearly the desired area in the
complex plane. For instance, in Figure 1, we show two circles to indicate
the types of regions we could consider.

The preceding analysis has led us to an impasse which tells us
that under the existing conditions we cannot approximate the desired
spectrum of functions with a fixed set of laguerre functions. To

illustrate, to encompass both a =10 and o = 0.1, the best choice of

p is 1 and the value of r will be f& . In order to obtain 10
error, nearly 50 terms would be needed, requiring & < .004 and at the

same time a fit interval of 100 seconds (25000 points).

This is clearly out of the question. During our period of
testing the effects of noise we will confine our attention to systems
which can be adequately approximated, in the noise free situation, by
a single, low-order laguerre fit. After the noise problem is sufficiently

understood, the basis set can be expanded to cover more of the region of

18



interest. A set of perhaps twenty roots could be chosen in the complex
plane so as to minimize the fit error for any system in our regionm. On
the other hand several sets of laguerre functions could be used.
Figure 2 shows how four sets of laguerre functions could cover
most of the desired region while staying within our computational
capabilities. Figure 3 shows an alternate configuration which while
covering fewer oscillatory roots, blankets the real roots extremely well.
Figures 2 and 3 are only approximate of course, since when
distinct eigenvalues of laguerre functions are involved, a reevaluation
of the working parameters must be made.

We now turn to the problems of the integration procedures

involved in forming {fi(t)}§ .

2. Integration Methods:

Trapezoidal integration was used .initially but proved inac-
curate. A procedure designed to convolve a tabulated function with
laguerre functions was programmed and tested but was found to be no more
accurate than trapezoidal integration because it required taking differ-
ences of large numbers. The integration finally chosen and now in
use is Simpson's Rule.

Our computational object in the beginning was to be able to
identify all eigenvalues with real parts between -10 and -0.1 and
"reasonable" imaginary parts. To obtain satisfactory integration accuracy
we should have an integration interval of about 0.03 and sho#ld have a
total fit interval [tl,T] of length about 30.

The integration interval is compatible with that previously
determined by the laguerre functions. The total fit interval of
800 ° 0.025 = 20 seconds in less than the three time constants which

would be ideal but does provide two time comstants for the worst case

(-0.1 eigenvalue).
19
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Chapter IV

Numerical Results

The results reported here were designed to give an estimate of

the effects noise will have on the identification. In order to isolate

these effects, the first system chosen was one which can be represented

exactly by the laguerre functions. The system is
[1, O] 0 1 07
-1 =2 1

having transfer function '——J;7f and kernel function

(s+1)
h(t) = te T .
For p = 1,
h(t) = Bo%(t) + Blzl(t)
. 1
with B =8 =—— = 0.353555.
272

The complete set of parameters used in the Fit Program and

in the Ho program appear in Table 1.

The problem was run first with no noise (N/s = 0).

gave excellent results

So = ,35355505
Bl = ,35355541
82 = -.11E-6
83 = ,28E-6

24



BS = ,89E-7
86 = -,26E-6 .

Just how good these results are may be seen from the taylor
coefficients {sk}. These should be s, = (-1)k+lk and in spite of

the difficulty of computing derivatives we obtained

s, = - .2E-5
sy = 1.00002
Sg = 9.034
S16~ -16.77

Using N/S = 0.5, we found that results had a fairly large
dispersion, indicating that using 800 points for fitting is not really
adequate. In order to average over a larger number of points and to

avoid drawing conclusions from a single noise burst, we ran five noise

bursts.

The dispersion of the results were, in fact, so much larger

than we had expected, that some additiomal checks were performed to

verify program performance. Among these was a demonstration of linearity,
done by fitting noise alone. This showed that the dispersions were

6
indeed caused by the projections on the fitting functions {fi(t)}o of

the noise.

The actual computation of the eigenvalues was the most sensitive
part of the process. Impulse responses and characteristic polynomials

were usually obtained with fair accuracy.

25



Information about the impulse responses is summarized in
Table 2. Burst 2 is undoubtedly the best, being virtually indistinguish-
able from the actual when graphed. Bursts 1 and 5 are the worst, Burst
1 having the lowest peak and Burst 5 having the highest initial and
terminal errors. Nevertheless, the impulse responses obtained are not
too bad. Figures 1 - 3 show the impulse responses for Bursts, 1, 3, and
5, together with the impulse responses of the associated realizations.
Notice that the realizations depart from the fit in the second half of the
interval. This occurs because of current space limitations in the ANALYSIS
Program, these will be removed soon, enabling us to fit over the full
range, rather than only over the first 2.3 seconds.

Table 3 shows the eigenvalues, characteristic coefficients, and
input coefficicents (B vector) for the five realizationms. Figure 4 shows
the roots in the complex plane.

These roots are hardly good approximatibns to the actual roots,
even though the fit impulse responses are, except for the initial value
on 5, consistently in error by less than 107 of peak value. Part of this
problem is caused by the coincident roots which are sensitive to the char-
acteristic coefficients. For instance in Burst 2, the impulse response

and the characteristic coefficients are in error by less than 2%, but the

eigenvalues are individually wrong by 25%. Since coincident roots are not

expected in practice, this particular problem need not concern us to much.
In addition, we can expect some assistance from realizations using the

larger interval mentioned above. Larger intervals, we know from experience,

will tend to bring the roots, for this realization, closer to one, thus

giving better eigenvalues. We might mention that in Bursts 2 and 4 the

realization showed less tendency to depart from the fit response.
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Although determination of system poles is a most important
task, we must also be able to show the system zeroes. For this the
last two columns of Table 3 are helpful. Naturally Burst 2 is the
best.

When the noise to signal ratio was increased to ome, all
errors in {Bk}i , {sk}, and the impulse response increased linearly.

Table 4 gives the eigenvalues which were obtained from the
five noise bursts and from the averaged Bk's of the five bursts.

The averaged impulse response for N/S = 1 appears in Figure
5. Again we are led to the conclusion that the procedures are working
well and that we can obtain quite reasonable results even in the presence
of low signal/noise ratios, but that 800 points is insufficient.

It is very clear here that the overall tendency of a noisy
signal is to '"spread" the impulse response so that the peaks are lower.
In general this will probably tend to move the eigenvalues closer to
the imaginary axis and to reduce the d.c. gain. It certainly tends
to do that here. This is the only observed effect that cannot be
removed by using more data.

Comparing Tables 3 and 4 with respect to linearity, we find b1

and b, very linear (doubled noise, doubled error). This is because b1

2

and b are almost completely dependent, linearly, on the first and

2
second sample points of the impulse response. The characteristic

coefficients tend to look at the global impulse response and are almost

but not quite linear, the eigenvalues obtained from them do not, of

course, have linear behavior.

27



In all this work the noise was obtained from a digital pseudo-
random noise generator. N/S was an input quantity and the noise

standard deviation was set equal to

S el

where for input
10

2 sin kot ,
k=1 &

having steady state output
10

z(t) = kzl (ak cos kwt + bk sin kot) ,

e S I
fa12= T fend

28
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Fit Program Parameters

K=26 (Order of laguerre approximation)

§ = .,025 (Integration step size)

p = 1. (Eigenvalue of laguerre functions)

N = 1600 (Number of steps, input)

N = 1599 (Number of steps, used)

INTST = 800 (First point fitted, input)

INTST = 801 (First point fitted, used)

IORFOS = 10 (Number of sines in forcing function)

N/S = .5 (Noise/signal ratio)

Tf = %-(Fit Interval) (Period of lowest frequency forcing term)
* * *

Analysis Program Parameters

§ = 0.1 (Impulse response sampling interval)

N = 49 (Number of points used)

NST = 23 (Starting dimension of Hankel matrix)
Table 1
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Actual Burst 1 2 3 4 5
y(0) 0 .0044 -.0003 .032 -.0011 .041
y(.8) .359 .334% .360 .337 .356 .361
y(.9) .366 . 344 .366 . 346 .359 .366
y(1.0) .368 . 349 .368 .352 .358 .365
y(1.1) .366 .351 .366 .354 .354 .360
y(1.2) .361 . 349 .361 .353 .347 .352
y(4.8) .040 .038 .041 .036 .029 .030
Table 2
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Appendix A

The Fit Program
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I. Purpose

The purpose of this program is to generate the coefficients
{Bi}g in a finite expansion
K
iZO B, &, (t) (1)
for the impulse response of an asymptotically stable, linear, stationary
dynamical system. The functions {li(t)} being used now in the program
are the laguerre functions [1], but the modular construction of the
program permits changes to different function sets.
The data on which the program works is the input function
u(t) to the unknown system and the output z(t) which is the system
response corrupted by noise. Here t ¢ [0,T].

The problem is solved by assuming the impulse respomse to be

represented in the form (1).

This function then is convoluted with the input to produce

an output which is a function of the finite vector

This is compared with the actual output function 2z over a subinterval

[tl,T] to allow the effect of initial conditions to decay and a least

square solution obtained for 8.

unctions

rt
o
[aW)
.
1]
(2]
H
[
t
$4
(3]
[
fu
+h

The actual mechanization works wi

{ui} and {zi}, u, = u((i-1)38).

In addition to the vector B8, the first few coefficients

of the taylor expansion of (1) are printed.



The program described here works in a testing mode where the input
and output sequences are generated internally from a known system. The deck
described here uses a generalized inverse routine to solve for 8. Other
versions of the program, easily obtained from this one by modification, get
the input-output sequences from externally generated cards and obtain 8 by

inverting the normal matrix.

This program has the capability of iterating on P, the eigenvalue
of the Laguerre functions, which is a free parameter in the expansion, to
achieve a minimum of the fitting error. At present this is not in use (see V,

Restrictions and Comments) but can be activated by removing the

GO TO 203

between EFN 404 and 510. (see VI, Procedure, and the listing in Appendix 1).

II. Operations - Input

1. The first input card has format

(3110, 2E10.2)

it contains
N = number of subdivisions in the interval of interest [0,T].
Maximum 1600.

K = order of approximation. Maximum 19.

KS = number of Taylor coefficients desired. Maximum 29.

DEL = 8§ = Length of a subdivision.

Suggested range is 0.02 < § < 0.1.
TSCALE = A parameter for scaling the time interval. Usually 1.

2. The second input card has format

(E13.8)

it contains

STDEV = the noise to signal ratio desired in the output,
(self-generated-data operation). The input used is
a sum of sinusoids, hence the noiseless output y(t)

is a sum of sines and cosines. The square root of

40



the sum of the squares of the coefficients 1is defined
to be the norm of the output, ||yi|. SIDEV * [|y]]
is the standard deviation of the noise added to y(t).
3. The third input card has format
(I5)
it contains
INTST = the number of subdivisions ignored in the least
square fitting. We allow INTST*DEL = tl time for
transients to subside. INTST and N must satisfy
N-INTST < 800.
4. The fourth input card has format
(7110)
it contains 7 fixed point ones in that format. This card has purely
historical significance.
5. The fifth input card has format
(12)
it contains

NCASE 1 if the run should terminate.

= 0 if another data set should be read.

Language is FORTRAN 1V, no tapes are used.

III. Printout

The output z(t) = y(t) + v(t), where y(t) 1is the noiseless

system response to the input and v(t) 1is noise.
10 10 1/2
k .k .
y(t) = ) (a, cos > t + b, sin > t). We define iyl =
WLk 2 k 2

Y(2+b2)
k;l ak k
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this is printed as OUTPUT NORM = ____ .
STDEV is printed as NOISE TO SIGNAL RATIO = __ .
The noise mean and standaerd deviation are printed.
The number of points (=N+1) in the interval [O0,T] is
printed.
The number of B8 coefficients (=K+1) is printed.
The number of taylor coefficients (=KS+l) dis printed.
T (=N#*DEL) is printed.
DEL the time increment, is printed.
The scaled time increment DEL*TSCALE is printed.
INTST is printed.
The rank of the matrix used to solve for B 1is printed as

RANK = .

The K + 1 components of 8 are printed.
The KS + 1 taylor coefficients are printed.
P, the eigenvalue of the laquerre functioms, is printed.

ERR, the experimental, relative standard deviation of the error,
N K 2] /2

P8 E () = 2{t)]

i = INTST 4=0

N-INTST

1
BRI

is printed. Here

rt
= -1)dT .
HO) Oj 2, @ule-1)

IV. Subroutines

The modular construction of the program expresses itself in

a relatively small MAIN and a large number of subroutines.

I~
to



1. Subroutine GENIO. The purpose of subroutine GENIO is to compute

. N+ T
the input vector {ui}l 1 and the output vector {zi}i+l .

P

u(t) = ¢, sin—= t

k=1 k 2

where cl = c2 = c3 = CS = c7 = c9 =1
and c4 =ce = cg = ClO = -1 .

The sign changes are designed to minimize the effects of initial
transients on the fitting procedures.

The noiseless output y(t) is composed of only the equi-
librium solution. The initial transient is omitted. There are two
reasons for this. In the first place it is a more honest procedure
since a better fit can be obtained if the correct transient is present
and we must assume that we do not know the initial state of our system.
Secondly it saves considerable machine time. This gives us

19 Kk K
y(t) = z (ak cos ? t + bk sin E-t) ,
k=1
where a, and bk depend upon ¢ and the system whose response is
desired. 1/2

10
2
GENIO computes the OUTPUT NORM, |lyl| =] I (ai + by)
k=1

and forms SD = ||y]||*STDEV.

GENIO contains a random number generator and a sample Ve
with mean zero and standard deviation SD 1is added to each sample

vy (i > INIST) to form the noisy output =z..

2. TFunction PHI1(T). Computes the number QO(T), the value at T

of the first laquerre function.

2 (£) = \/2p e PE
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3. Function PHI2(T). Computes the number ll(T), the value at T

of the second laguerre function.

2, (t) = v2p e Pt (2pt - 1).

4., Subroutine RCSN. This subroutine obtains £k+l(t) from Rk(t)

and lk_l(t) by the following recursion relation

t - 2k -
) (t) = 2pt - 2k -1 zk(t) - k2

k+1 ) .

k-1

5. Subroutine FKSUB. This subroutine generates the functions
t
fk(t) = OJ lk(r)u(t—r)dr .

In the actual mechanization, it forms equal matrices F and FP with

elements
t
F(i,3) = J f. l(r)u(t—r)dr
o/ 37

where t = (INTIST + 1 - i) * DEL.

FKSUB calls functions PHI1 and PHI2 and subroutine RCSN.

6. Subroutine GINV2. This subroutine takes the matrix FP constructed

in FKSUB and overwrites it with the transpose of (FP)+, the pseudo inverse

of FP.

The rank of FP is printed from GINV2; it should be equal to

k + 1 in virtually all cases.

7. Function DOT. GINV2 requires the function DOT to compute inner products

of the columns of FP.
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8. Subroutine CHECK. This subroutine computes ERR, the fitting error.

Given the matrix F conducted in FKSUB, the vector B8 computed

in MAIN, and the output vector 1z, it computes

N+1-INTST 2

2 )

Hrs - 217 = 4o ((F8); = Zryrsren-i

The experimental standard deviation of the error is computed

from this

liFS -zl

N-INTST
9. Subroutine DKPHI. This subroutine computes

d
- %, (t)
dt k £=0

for k=0, ..., K. These quantities are used in calculating the Taylor
coefficients of the estimated impulse response.
10. Function BCOF. This function computes the binomial coefficients for

use in DKPHI.

Several comments are in order concerning the subroutines.

When using experimental data entered from cards, we retain GENIO

for the sake of convenience, but its purpose is solely to read cards.

Converting to use of the normal matrix rather than the generalized

inverse requires considerable effort, including much use of double precision.
Such a deck is available.
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When changing from the laguerre functions to a different data
set CHECK, GENIO, GINV2 would be retained unchanged. FKSUB would be
somewhat modified, DKPHI would be completely altered, and the other

routines more or less drastically changed, dependent upon the function

set.

V. Restrictions and Comments

Dimension restrictions have been noted under II Input.

The program appears to be operating correctly, but as presently
written it cannot be said to operate as well as expected. In the noise-
free case, oscillatory systems with imaginary parts greater than about 2.
do not yeild good fits. In the noisy case, even with 800 points to fit
over, the approximation is not good enough to produce accurate results in
the MICARE program (MSG PD-67-104). The B vector averaged from several
distinct trials seems to do reasonably well. More information on the
results can be obtained from a forthcoming MSG Technical Note.

The iteration on P to minimize ERR is not being used because
it has proved ineffective in treating noisy data.

When fitting exact data, the iteration was extremely helpful in
obtaining accurate information about the impulse response. However, the
variations leading to this improvement were about 10—4 or 10—5 of ilyll -

Therefore at reasonable noise levels, this iteration was virtually useless.
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VI. Procedure

Circled numbers, e.g. 26 are external formula numbers in the

FORTRAN source program.

401

551

23

Initialize for iteration on P:

Set P

Read N,K,KS,DEL,TSCALE,STDEV,INST

Make N and INTST odd numbers, INTST = 5.
Scale DEL.

Call GENIO to form {ui}, {zi}, and |y| -

Print N+ 1, K+ 1, KS + 1, T, DEL, TSCALE, T*TSCALE, DEL*TISCALE,
INTST

Call FKSUB to form the equal matrices F and FP with

t
F(i,j) = f zi(r) u(t-1)dt
o

where t = (INTIST + j - 1)* DEL .

Call GINV2 to obtain the pseudo-inverse and rank of FP.

Compute B as
8 = (FP)*z

where only the components z; of z from 1i = INTST to

i =N+ 1 are used.

Call CHECK to obtain the standard deviation of the fit

]FB - 2
N - INTST
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29 Normalize this error by dividing by l[y”

_ _IF8 = 2{
- ERR = T3 1] (N-INTST)

Print 8

| Compute the Taylor coefficients
Print N, K, T, DEL
Print the Taylor coefficients.
Print P and ERR.

TO TO 203

(This omits P iteration for ERR minimization)

The error minimization is done by fitting a quadratic in P
through the smallest three available errors. There is only one error
return, when the second derivative is negative, i.e., when the function

appears to have no minimum locally.

* % % % % % %

203 Read NCASE

If NCASE = 0, to to 401

STOP
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VII. Mathematical Analysis

1. The Procedure.

Given the linear stationary dynamical system

% = Fx + Gu
y = Hx (7.1)
z=y+v,

where v 1is observational noise, we know that the output can be written
as

H
z(t) = HetFx(O) + J He(t_T)FGu(T)dT + v .
0

By a change of variable, this can be rewritten as
tF t TF
z(t) = He "x(0) + J He “Gu(t-t)dt+v .
0

From a knowledge of z(t) and u(t) only on some interval [0,T] ,

we want to obtain an estimate h(t) of

n(e) = Hetie .

In order to do this, lacking knowledge of x(0) , we assume that F

is asymptotically stable and that there exists a t; < T such that in
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[tl,T] . HetFx(O) is very small compared with

t
J He Tou(t-1)dt .
0

That is, we assume that on [tl,T] ’

t o
z(t) = [ He' Gu(t-t)dt + v(t) ,
0

and we then try to determine h(t) such that

5 T ¢ 2
o = J [ J A(t)u(t-t)dt - z(t)] dt (7.2)
tl 0

is minimum.

Basically we use a Rayleigh-Ritz technique, that is we select a set
of functions {li(t)} , which are "suitable" and represent h by linear

combinations of the 21
h(e) = ] 8.2.(D) .

This reduces the problem to determining B8 such as to minimize 02 .

t

t
- K
J h(t)u(t-1)dr = z B. J £, (t)ult-t)dt .
0 S

We call the integrals above new functions

t
fi(t) = J Qi(r)u(t-r)dr . (7.3)
0
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Then it is the (nonorthogonal) basis set fi(t) upon which we
will project z(t) to determine B . We are fitting the function

z(*) on [tl,T} with the expansion

K
hzo BE () .

Naturally we are interested in the linear independence of {fi}s
In addition we should determine whether or not the system (7.1) can be
uniquely determined from a knowledge of only 2z and u . These two
questions are intimately connected as the development in 2 will show.

Assuming the functions {fi}§ to be independent, however, we can
proceed.

Rewriting 7.2 in terms of the fi(t) gives

T 2
% = J 2(6) - ] BE (D) . dr, (7.2a)
i=0

t

which is then solved for the minimizing B8 vector.

2. Numerical Implementation.

.

A) The convolution integration in 7.3 is performed by Simpson's
Rule, obtaining fi(t) at N+2 - INTST points on [tl,T]. To expedite
the mechanization, we insure an odd number of points on the interval
[O,tl] by making INTST odd, and we make the number of points at
which fi is computed even by making N odd.

B) (7.2a) is minimized by using a generalized inverse routine to

solve the linear finite system

[fij]B =z,
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= ié = i .
where fij fj(l ) and z, z(i8)

3. Linear Independence of {fi(t)}i .

In order to investigate this we will consider only u(t) of

the type which we use, i.e.
M k
u(t) = kzl ¢ siny €, lckl =1. (7.4)

We further assume that all li(t) are impulse responses of asymptotically

stable, linear stationary dynamical systems; this is in fact a sine qua non

for being "suitable" to our problem. Because we are looking only at

steady-state output z(t) , t 2 ] after initial transients have subsided,
the analysis is somewhat simpler. For any asymptotically stable system
(7.1) the steady-state output y(t) for input sin %-t is

y(t) = A_sin % t + B, sin % t. (7.5)

Since the zi(t) are impulse responses, fi(t) may be thought of
as the output of a linear dynamical system to the input u(t) and there-
fore is the sum of terms like (7.5).

Therefore we have

K
Lemma: A necessary condition for the function {fi(t)}o to be

+
independent is that in (7.4), M2 Eil'.

Proof: {fi(t)}§ is a set of vectors from the 2M dimensional space

spanned by

k h M
{sin L, Cos 3 t}l
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therefore if K+ 1 > 2M , the set is linearly dependent.

In fact, we can write the vector

as f=Av (7.4)

where

and A is a constant matrix. Then {fi}I: is linearly dependent if

there exists a constant vector p + 0 such that

Since A is (K+1) by 2M it is clear that such a vector exists

if K+1>2M.
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It is tempting to hypothesize that the {fi}§ are linearly

independent if M 2 K;l and the set {21}5 is linearly independent.

Unfortunately this is not true.

Counterexample:
L =e -At
o}
and
2 2
. = (n=A) (u7+1)  -ut (- (n“+1)  -nt
l_ 2 e + 2 e
(n=u) (A7+1) (n=u) (A7+1)

N
have the same steady-state response to sint , i.e., fo(t) " fl(t)

for t large .

Since this implies that the systems

H=1 F=-2 G=1
and
(n=1) (u>+1)
-y 0 (=) (A1)
H=[1,1] F =[ } G = )
0 =-n (A=) (n"+1)
(=) (A%+1)

have the same steady-state response to u(t) =sin t , it is clear

that we do have problems also in determining the system uniquely solely

from input-output information.

Both questions can be answered easily however with the help of the

following.
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Corollary: Let h(t) be the impulse response of a c.c. = c.0.,

asymptotically stable linear stationary dyanamical system. Let

Lhe) = 22

q(s) °

Then the steady-state response f(t) of the system to u(t) ,

that is
t
£(t) o J h(t-t)u(r)dr for large t ,
0

is zero if and only if u(t) satisfies the homogeneous differential

equation represented in the frequency domain by
P(s) ’

te., L7 p(s)) u(t) =0

This is a corollary to the much more general theorem by Leonard

Proof:
Weiss [1].
Applying this to our case, we take the Laplace transforms of
K pi,K
{zi}o > {q, and compute
io
K
s) . 7, A
q(s) i=0 * 94

If deg p(s) < 2M then the functions {fi}§ form a linearly independent

set. In particular:
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Case 1: The laguerre functions,

Pis) _ _Pi(s)
qi(s) (s+1)l+l

Therefore deg p(s) <K+ 1, hence 2M 2 K+ 1 is both necessary

and sufficient for linear independence.

Case 2: The Kautz function [2].
For the Kautz functions deg p < deg Fx <K+1 for K odd
and deg p = deg 0 K+ 2 for K even, In any case then,

we have the same result, 2M = K+ 1 is both necessary and sufficient

for linear independence.

Case 3: Arbitrary pole selection.

If we select

=X, (t)
. i
L., = € cos w,t
21 i
for i =0,n; w # o,
i
=i, ()
£ = e 1 sin w,t
wit+l i
-A.t
and Ri =e for i =2n+ 2,...,K

with  w, $ v for 1% j and XA $ g for i+j,1,3322n+2
then deg p(s) < K+ 1 . Again we have that 24 2 K+ 1 is both

necessary and sufficient for limear independence.
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4. Uniqueness of Identification.

We wish to determine what system estimates

can be obtained with fixed M and a set {zi}§ » K+1 <24,
such that {fi}i are linearly independent.
The counterexample in (3) can help our thinking about the problem.

Letting A =1, u=2,n =3, we find that the systems

and

-2 0 [
Hy = [1,1] F, = [ 0 -3] Gy = [—5]

have the same response to u(t) = sin t . However they have impulse

responses

and

-2t =3t _ 5
hz(t) = Se - 5e , hz(s) = Te72) (s53) °

Figure 1 shows hl(t) and hz(t) .

. . 1
In their expansions in T we have
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hl(s) ~ fi, -1, 1, -1, 1,...1]

{o, 5, -25, 95, -325,...} .

ee

hz(s)

This shows that we can get an exact fit of the input-output
relations and be very far wrong in the impulse response. We attempt
to circumvent the problem by increasing M. For instance if in
the previous example, we let u(t) = sin t + sin 2 t , then we obtain

the algebraic system ‘

2 38, 1
5 10 |2
11 | 1
5 - 10 2
2 3 1
3 13 5 .
2 2 2
| B 13 | -5 1

Here Bo and Bl are respectively the coefficients of the functions

g =e 2t and 2, = e % which will minimize (7.2). The optimal B,

o 1

are

4.01572

L
It

3.62098

w0
[

and the impulse response appears in Fig. 1.

The most unfortunate aspect of the procedure is that the error

R J (h(t) - h(t))3dt
0
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is not a monotonic function of 02 , in 7.2, for fixed K . For

instance in this case the vector which minimizes 62 is

©w
]
W

The impulse response for this fit appears in Fig. 1 also.

Note, in fact, that €2 does not necessarily decrease for
fixed M as K 1increases. In fact we can obtain a better 62 fit
with Bo --% , B, =0 , which is the minimum 02 fit for

1
K=0,M=1 than by minimizing 02 for K=1,M=1.

Remark:

j (et g 72t _Ble—3t)2dt
0 © .

2 2
158o + 248081 - 4060 + 1081 - 308l + 30

60

Now we see that there are two aspects of the uniqueness question.
Let us take an asymptotically stable system (7.1) of order m and record
its steady-state output for 2M 2 n . Then there is only one system
of order n which will give that output.

On the other hand if the eigenvalues are unknown and we use some
arbitrary set of functions {2i(t)}§ then it is not necessarily true
that we are fitting the impulse response more closely as K increases
with M remaining fixed, even though the functions {fi(t)}§ are

linearly independent. In fact, if the charaeteristic polynomial of the
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unknown nth order system has no roots in common with the zi(t),

then wvhen n+ K+ 1> 2M , we can make 02 = 0 and still have a

large ez .

Before attempting any conclusions about uniqueness or operational
procedures we should obtain a better idea of the mathematical principles
which underlie the process we are using. That will be done for a
slightly idealized variation in the development which follows.

The idea may be stated easily. Instead of minimizing iLs - n| ,

where
L= [2,(t),...,2(0)] ,

we are minimizing ”LB - h”Q , Where _Q is a non-negative definite

symmetric kernel.

What our program does is to minimize

T
o = j (F8 - z(t)]1%dt

t
1
where F 1is the K + 1 - component new vector with

t

Fi = J u(t-r)zi_l(r)dt .
0

Using the definition of F we can rewrite 02 as
t

T rt
J j [BL{t)-h(T) Ju(t-1) J u(t-s) [(s)B-h(s)]dsdtdt .

tl 0 : 0
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We now assume explicitly that L(t) = 0 = h(t) for t 2 t,

and that t. > t, . Interchanging integrals then gives us

1 2
t2,%2 T
J J {BL(t)-h(T)] J u(t-1)u(t-s)dt [L(8)B-~h(s)]dsd
0 0 ' tl
tz tz )
- J J [BL(T)-h(1)1Q(t,s)[L(s)B-h(s)]dsdT .
0 O

Q(t,s) 1is clearly non-negative definite symmetric. Furthermore,

with

M
() = Z sinkwt ,
. k=1

if T - t, is a multiple of %} , then the components of u(t) are

1
2 . . .

orthogonal, and €~ associated with uM+1(t) is less than uM(t) .

(This follows from the fact that the eigenfunctions of QM(s,t)

with nonzero eigenvalues are orthogonal and coincide with a subset

of the eigenfunctions of QM+l(s,t) )

One thing that is not clear from this is the speed with which

l|lLs - hHQ > |lLg - nj| .

Treated as a periodic function, each component of L has a dis-~
continuity at zero and therefore has considerable high frequency power.

In fact because of this discontinuity, we cannot prove simply that-

lLe - hllQ + ||t = ]l
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1
and we cannot expect convergence better than ¥
We can draw some recommendations from this analysis for use in
our operational procedures.

1) The input should contain a constant.

2) The lowest frequency, w , appearing in u should be such that

T-1t, =8N+ 1 - INTST)

1

is a multiple of %? .

3) It might be a.good idea to try using some zi(t) which are zero at
t = 0, to avoid the discontinuity.

It is interesting that when

1 M
u = Z-+ Z sinkwt
k=1

then the procedure, in effect, takes the Mth order

approximant L of L snd minimizes ||L8 - h]l .
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C K K+1 DENOTES THE ORDER OF THE LEAST SGUARES FIT
¢  MAXe VALUE OF K IS 29
C KS KS+1 DEFINES THE NUMBER OF SK COEFe DESIRED
C MAXe VALUE OF KS IS 29
o C DEL 77T 7 ACTUAL TIME INCREMENT OF DATA POINTS oo T
C TSCALE SCALING FACTOR USED ON TIME
[ ol TTTTTTTT 10 SCALE TIME BETWEEN 0-1 USE TSCALESFINAL TIME
C MA X MAX NO. OF ITERATIONS ALLOWCD IN EVALUATING Trt INVERSE
ST e T ELEAST 077 ACCURACY LEVEL DESIRED IN THE TINVERSE ‘
C KPF =1 PRINT F MATRIX
i S C =0 DO NOT PRINT T T T
___C _ KPZ . =1 PRINT Z VECTOR
C o T U =0 DO NOT PRINT
C * KPF1 ' =1 PRINT INVERSE OF F MATRIX
C TTTTT =0 DO NOT PRINT -
. C _.__KkPI =1 PRINT IDENTITY MATRIX_TO TEST INVERSE o
C =0 DO NOT PRINT :
C KPITER =1 PRINT NO. OF ITERATIONS AND MAXe ERROR IN INVERSE
< o =0 DO NO PRINT :
C KPRES =1 PRINT RESIDUALS = ZVEC-FMAT*BETA
C C T 7T =20 DO NOT PRINT -
C KPB =1 PRINT BETA VECTOR
d - T 77 =0 DO NOT PRINT T

COMMON/TEN/U(1603) _

COMMON /SCALE/ P
COMMON /NORM/ ERR,INTST

COMMON/FK/Fc801;20);PHr(iTiEbéTIDELT.Npi,Kpl,FP(Ebl,zox

DIMENSION AFLAG(20) »ATEMP(20)

- DIMENSION SK(30) sBETA(20)92(1603)»UNIT(20520)
DIMENSION DPHI(20)

DIMENSION E(31,5D(3)
DOUBLE PRECISION PHI,BETAsSK

" INTEGER COUNT
C FORMATS

100 FORMAT(311052E102)
101 FORMAT(110,D10.2)

102 FORMAT(7110)
200 FORMAT (1H1,45H DYNAMICAL SYSTEM MODELING OF HUMAN OPERATORS///

118H I - LINEAR MODELS//////62H NOs OF INPUT-0OUTPUT POINTS USED IN

2LEAST SQUARES FIT - N+1 = +15//40X»22H ORDER OF FIT - K+1 = »13//

T 328X.34H NOs OF SK COEFe DESIRED = KS+1 = y13777777)
201 FORMAT (3X»30H SIZE OF TIME INTERVAL USED = »Fl0.5//33n TIMc_INCREM

T “T7 {ENT OF DATA POINTS = sF10e5//72X+31H SCALING FACTOR UStU ON TimE =

 29F10e57/9X924H SCALED TIME INTLRVAL = ?FIOQ?{qu’z:ﬁ_§pAEF?_Tlﬁ;_L“m,
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202

150
151
152
153
154
155

156

157

158

159
160
161
162
401

3NCREMENT = sF10e5/77777)

FORMAT (51H MAXe NOe. OF ITERATION ALLOWED TO OBTAIN INVERSE = ,15//

114Xs37H ACCURACY LEVEL DESIRED IN INVERSE = ,E10e2)
FORMAT (1H1,27H F MATRIX = PRINTED BY ROWS)

FORMAT (///4H ROWs13//(5E2048)) S
FORMAT (1H1 18X s 1HI 16X »4HZ (1) /(10Xs1105E2048))

FORMAT (1H1928H F INVERSE = PRINTED BY ROWS)
FORMAT(1Hls34H IDENTITY MATRIX = PRINTED BY ROWS)
FORMAT (1H1918Xs1HKs13X s 7THBETA(K)/(10X9110+D20e8))

FORMAT (1H125H SK VECTOR OF SCALED TIME//19Xs1HIs15XsSHSK(I)/

1(10Xs1105E2048)) L
FORMAT(///18H NO. OF ITERATIONS,I5/7//11H MAX. ERROR»7X9D208)
FORMAT (1H1,27H SK VECTOR OF ORIGINAL TIME//19X»1HI»15Xs5HSK(I)/

1(10X+110+E2048))
FORMAT (1H1918Xs1HI 11X 9HRESIDUALS)

FORMAT(10X9I10sE2068)
FORMAT(//+5X98H INTST= ,15) ) L o

FORMAT ( E13e8 )
CONTINUE

" "COUNT = -1

3

T 4+4.1E+30
+4,1E+30

P = 44132223

103

N = N/2

READ 162 » STDEV

7" 'READ 103, INTST

FORMAT (15)

N=2%N-1

INTST = INTST/2
INTST = 2#INTST + 1

“IF (INTSTeLEeS) INTST=5
DELT = DEL/TSCALE

7 READ 102 sKPFsKPZyKPFISKPTsKPITER»KPRESKPB

DEL = DELT*TSCALE

C

a¥a¥a

CALL GENIO (NsDEL»U»ZySTDEV»SSSsINTST)

CENID SUBROUTINE GENERATES THE SYSTEM INPUT-OUTPUT DATA FOR A TeSl CA

7551 CONTINUE

THE LEAST SQUARE SOLUTION IS OBTAINED BY SOLVING THE MATRIX

" TEQUATION T TFMAT*BETA=ZVEC

COMPUTE FMAT

DELT=DEL/TSCALE

T2=140/DELT

T1=DEL*N
TT=DELT*N_

NPl1=N+1
KP1=K+1l

KSP1l=KS+1

_ PRINT 200sNP1sKP1,KSP1 .
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PRINT 161 s INTST
CALL FKSuB , R —

NR=NP1+1-INTST -
CALL GINV2(FPsUNITsAFLAG,ATEMP»8019NRsKP1)

-~ COMPUTE BETA VECTOR
23 DO 71 I=1,4KP1

BETA(I)=0.0
DO 70 J=1sNR

TL=INTST=14J
BETA(I)=BETA(II+FP(Js1)*Z(L)

70 CONTINUE
71 BETA(I)=T2#BETA(I)

" COMPUTE ERROR IN LEAST SQUARES FIT
CALL CHECK(BETAsF5ZsDELTsNP1,KP1)

" 29 CONTINUE

ERR=ERR/SSS . o R

" PRINT 1555 (LsBETA(L) sL=14KP1)
COMPUTE SK VECTOR

DO 300 1 =1 » KSP1

IML =1 =1

T T 7T 7777 CALL DKPHI ( KP1 s IM1 , DPHI )

SK(I) =z (o

DO 301 IXI =1 4 KP1
SK(I). = SK(I) + BETA(IX1) * DPHI(IXl)

T7301 CONTINUE

300 CONTINUE

DO 95 I=1,KSP1
IMl=1~1

195 SK(I1)=SK(I)/({TSCALE**IM1)

- 402 FORMAT( 1Hle/s( 5X s 3HSK(9I12+s3H)= sE15e8 » 5X 94HR5K(9121?H)= ’

1 7 E15.8) )
PRINT 403 o N » K Tl , DEL

403 FORMAT (1H1s// 99X 92HN=514s9Xs2HK=91499Xs14HTIME INTERVAL=sF8e5 »
1 9X915HTIME INCREMENT=sF845 )

404 FORMAT(///+(5Xs3HSK(512+3H)= »,D1548))
PRINT 404y (IsSK(I)sI=1,KSP1)

"PRINT 550s Ps ERR
GO TO 203

IF ( COUNT ) 510 » 520 » 530

510 E(1) = ERR - _

D(1) = P
PRINT 550+ Ps ERR

550" FORMAT(//5Xs 6H P = 3 EI5+855Xs 6H ERR = 3 E1548 )
p = lol*p

COUNT = COUNT + 1
GO TO 551

520 E(2) = ERR
D2y = P

COUNT = COUNT + 1
PRINT 5504 Py ERR

IF ( E(1) oLTe E(2) ) GO TO 540
IMIN = 2

P = 1.1%p
GO TO 551

540 IMIN = 1
P = «8%P *
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GO TO 551

B s ERR
) _GO_TO 203

530 PRINT 550 p
IF ( ERR «GTe E(IMAX)

E(IMAX) = ERR
D (IMAX) P

IDMIN = 1

DMIN =

D(l)

I oo )

IDMAX = 1

580

DMAX

_IF

581

m—————— o s &+

583

282

580

IDMIN
DMIN

(D(IX1) «GT o DMIN )

-
=

D(1)
IX1

= 2+3

GO TO 581
IX1 A
D(IX1)

CONTINUE

- IF
IDMAX
DMAX

IMIN -
T EMIN =
IMAX = 1
EMAX

DO

- IF

582
(

"EMIN

CONTINUE
(ECIX1)
IX1
= E(IX1)

IF
IMAX

EMAX

CONTINUE

E(IX1)
IMIN = -1X1

(D(IX1) +LT. DMAX ) GO TO 580

IX1
D(IX1)

CONTINUE

1

E(l)

E(1y
IXx1

243 L
«GTe EMIN) GO TO 583

TECIX1)

.LTe EMAX ) GO TO 582

“RELERR = ( EMAX = EMIN )/ EMIN
IF ({ RELERR eLTe 0405 ) GO TO 203

~E(3) * ( D(1)%%2 = D(2)%%2 )

X = =E(1) * { D(2)*%*2 = D(3)%*x2 ) + E(2)

(DI »¥2 = D(3)%¥*2 )

1
Y
1 -

E(1) * ( D(2) - D(3) )
CE(3) % ( D(1) = D(2) )

(

)

E(2) * ( D(1) = D(3) ) +

X1 = CCot1y=D(2)) * ( D(1)=D(3)
IF ( (Y/X1) oGE. 0 ) GO TO 552

) * ( D(2)=D(3) ) )

~ PRINT 553 _ ]
553 FORMAT (28H SECOND DERIVITIVE NEGATIVE

)

GO TO 203
552 CONTINUE

Y = =e5%¥X /Y

) «ANDe ( Y

olLTe

DMAX ) ) GO TO 560

( DMIN oLTe Y o
= X V1 /X1

TUTXT=T (T =x¥D(2) /Y +
IF ( X «GEe 0e ) GO TO 570

P = 1s1%DMAX
GO TO 551

570 P = J9*DMIN
GO TO 551

560 P = Y
GO TO 551

203 CONTINUE
READ 400 » NCASE

400 FORMAT(12)
T0 401

IF ( NCASE -EQ. 0 ) ©O

e e = e g
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STOP
END
o ) B 69




R

&~04/29/68 T T 80/80‘ LXST ———

e~ 'IT_FOR SUBL e
SUBROUTINE CHECK(BETAF»ZsDELTsNP1,KPI)

_ COMMON /NORM/ ERR,INTST -
DIMENSION BETA(20)sF(801920)92(1603)
_ DOUBLE PRECISION BETA»ERRORsTERM

ERROR=040 _
i DO 1 I = INTSTsNP1

o TERM=0.0
Ll=1+1-INTST

. T DO 2 K=1,4KP1
2 TERM=TERM+F(L1+K)*BETA(K)

TERM=DELT*TERM
ERROR = ERROR + ( Z(I) = TERM ) %% 2

1 CONTINUE
ERROR = SQRT(ERROR/(NP1=INTST))

77 ERR = ERROR
e RETURN
END
N _ |
i
— e N - 70 -
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'IT FOR suB2 e
SUBROUTINE GENIO (NPsHsDUsDZsSTDEVsSSSsINTST)

e e € DU . GENERATED INPUT DATA ___
C H TIME INCREMENT USED IN GENERATING DATA

L C o __ NP=]1 CORRESPONDS TO THE 0-TH POINT
C NP NP+1 DENOTES THE NO. OF POINTS DtSIRED

- C SUBROUTINE TO GENERATE SYSTEM INPUT-QUTPUT DATA 3
C DZ GENERATED OUTPUT DATA

o ~ DIMENSION DU(1603),02(1603) _
. DIMENSION AS(15),AC(15)
'DIMENSION S(15)5C(15)
58§ = 0
FPER=(NP+1=INTST)
FPER=FPER*H/12,
FFREQ=2.%#341415926/FPER
ACO=e25
IORFOS=10 o L
" DO’'5 K=1,I0RFOS ' T T
L XK = K
) 'XOM=FFREQ* XK
B C FOR 1/(S+1)%%#2 -
TTTTTUTTTTTTT DENOM = XOM# ¥4 o +2 4 ¥XOM¥ %2 g +1
o AS(K)=(1e=XOM*®%2,)/DENOM
T T U ACIK) ==24%XOM/DENOM
SS = SS + AS(K)#%2, + AC(K)*%2,
775 CONTINUE T
$§8S = SQRT(SS)
oo T PRINT 100 » SSS » STDEV ™ ~ 7~ )
100 FORMAT(///55Xs14HOUTPUT NORM = 5 E15485///55X»25HNQISE TO SIGNAL

. 1RATIO = sE15484///7)
101 FORMAT(///95Xs13HNOISE MEAN = oElS.So///oSXol?hNOISE STe DEVe

1E15489777/)
102 FORMAT(///’SX,SHNOISE,//,(ISyZXoElS 8))
T SD = SSS*STDEV T T
IF (NANAJEQe381) GO TO 6

TIA=1 )

KA=2%%18+3

NANA=381

CA = 2.**35

6 CONTINUE

PRINT 997,1IA

997 FORMAT(5Xs48HSTARTING —INTEGER  FOR  THE NOISE  BURST =,I111)y

IB=NP+2=INTST

IB=1Bs2" 7

DO 4 kB=1,18B

IA = ABS(IA*KA)

T1l=FLOAT(IA)/CA

IA = ABS{IA%KA)

T2=FLOAT(IA)/CA

T9=SQRT(=2.*ALOG(TI1))

T8=6428318531%T2

KC=2%KB+INTST-1

_ DZ(KC)=SD*T9*SIN(T8)

DZ(KC=1)=SD*T9*COS(T8)

4 CONTINUE.

XMEAN = Qe

NPl = NP + 1 — .

=
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NPP1=NP+1 . _

Dz(1l) = sD
x=00

Y=0e
GO 70 3

T 7773 CONTINUE — ,
: PRINT 102y (1,DZ(1),1=800,900)

V=0.
W=0e

ST 5o 27 I=INTSTHNPPL T
v=V+DZ (1)

W=W+DZ (1) **2,
27 CONTINUE

T AVE=NPP1-INTST+1
V=V/AVE

W=SQRT (W/AVE)
PRINT 101ls VW - -

DO 28 I=INTSTsNPP1l o

.. bztI)=bz(1)=V
28 CONTINUE
DO 1 I=1,NPP1

; TTUTI = (I-1)%H
Do 10 K = 1, 10

XK = K
XOM=FFREQ* XK

TIF(I.LT&INTST) GO TO 10
C(K)=COS(XOM*TI) 7 -

10 S(K)I=SIN{XOM*TI) )
DU(l) = 5(1)t§(2)f§1})-5(4)+5(5)—5(6)+5(7)-5(§l+5(9)-5(10)+.25

T X=X+DZ (1) T
Y=Y+DZ (1) *#%2,

TF({IeLTSINTST) GO 7O 1
bDZ(I) = AS(l)*S(1)+AS(2)*S(2)+AS(3)*5(3)-A$(4)*S(4)+A5(5)*5(5)

1 —AS(6)%5(6)+ASTT)I¥ST{TI~AS(8) ¥S(8)+AS(9)*¥S(9)1-ASTI0)*S(10)

2 +AC(1)%C(1)+AC(2)%C(2)+AC(3)*C(3)~AC(4)*C(4)+AC(5)*C(5)
3 =AC(6)*C(6VFAC(TI¥C(TY=ACT8 ) *C(BI+AC(9I*¥C(91-ACTION *CIIOI+DZ(T)
4+ACO

1 CONTINUE
X=X/NPP1

Y=Y/NPP1
Y=SQRT(Y)

PRINT 101y XoY
RETURN

END
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. _'17 FOR suB3

SUBROUTINE FKSUB
COMMON/TEN/U(1603) o e

COMMON /NORM/ ERRsINTST
CCMMON/FK/F(801520) sPHI(251603) sDELTsNP19KPLsFP(801+20)

TTTTTTTTTTTTT DOUBLE PRECISION PHI O T
. DO 1 I=1,NP1

T=(I-1)*DELY
PHI(1,1) PHI1(T)

T - PHI(2,1) = PHIZTT)
1 CONTINUE

L1=NP1-INTST+1
L1=L1/2

DO 2 K=1,KP1l
KM1=K-1

TTUDO 3 L=1l,L1
JISINTST+2%L=4

“Cl=0
C2=0

~ - B1=0
B2=0

DO 4 J2=34J192
J3=J1-J2+3

T C1=Cl4PHI(1sJ2)1%U(J3)
C2=C2+PHI(15J2)%U(J3+1)

TB1=B1+PHI(1,J2+1)%U(J3-1)
B2=B2+PHI(1,J2+1)%¥U(J3)

"4 CONTINUE =
J4=2%L -1

- J5=2%L

F(JGeK)=(PHI(191)%U(J1+2)+PHI(1sJ1+2)%U(1)+4e*B1l+
12 e ¥C1l+4o#PHI(192)*U(J1+1))/30 :
FP(J4sK)=F(J&sK)

FUUBsK) = (PHI( 1, 1Y¥U(JI+3)+PHI (T, JI+2)%¥U(2)+4 . ¥B2+2.¥C2
1+44#PHI(192)%U(J142)) /3

FP(J5sK)=F(J5,sK)

"2+(5.*pH1(1;JI%3S¥UYIS+s.iPHT(1.J1+2)*U(2)-PHI(1.J1+1)*u(3))/12.

3 CONTINUE
N =K

TTTTTTTTTTTTDOOS 1J =10y NPL
T = (Iyg -1 ) % DELT

TTTTTTTTTTTTTT T CALL RCSNTUPHI Uy T e Nos T
5 CONTINUE

2 CONTINUE

100 FORMAT(5X»6D2048)
T TTTRETURN T
END
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_'1T FOR suB4

o e " SUBROUTINE GINV2 (AsUyAFLAGSATEMP MR INRINC)

_ THIS ROUTINE CALCULATES THE GENERALIZED INVERSE OF A
AND STORES THE TRANSPOSE OF IT IN A
___MR=FIRST DIMENSION NOe OF Ae

NR = NO. ROWS IN A
NC = NO. COLUMNS IN A

77U IS THE BOOKKEEPING MATRIXe
AFLAG AND ATEMP ARE TEMPORARY WORKING STORAGE.

OOINNONNO

s "DIMENSION A(8015207sU(209207sAFLAGI25)sATEMP(25)
DO 10 I=1,NC

D05 U =1 NC
5 U(lsJ) 0.0

wonon

10 UGIsI) = 140
FAC = DOT(MRyNRsA»lsl)

FAC = 1e40/SQRT(FAQ)
DO 15 I=14NR

T T T TT15 AGLs1)=A(TI,1) ®FAC T
DO 20 I=1sNC

20 U(ls1)=U(lsl)%FAC
AFLAG(1)=1.,0 L

T €T 7T DEPENDENT COL TOLERANCE FOR N'blf"FfﬁﬁTTNG POINT FRACTION
N=27

T T TOL = (106 ¥ QeSkEN)HX2
D0100 J=24sNC

T DOT1 = DOT(MRINRA»JsJ)
JM1 = J-1 - -

DO 50 L=1s2
DO 30 K=1,sJM1

30 ATEMP(K)=DOT(MRINRAsJsK)
DO 45 K=1sJM1

" DO 35 I=1yNR
35 A(IsJ)=A(1sJ)=ATEMP(K)*A(I4K)*AFLAG(K)

DO 40 I=1sNC T
40 U(I9J)=U(IsJ)=ATEMP(KI*U(I»K)

45 CONTINUE
50 CONTINUVE

"DOT2 = DOT(MRsNRsA,JsJ)
IF((DOT2/DOT1)=TOL) 55,55,70

55 DO 60 I=1,JuM1
ATEMP(1)=0.0

DO 60 K=1,1 ~ =
60 ATEMP(I)=ATEMP(I)+U(KyI)*U(K»sJ)

T DO 65 I=1,NR T
A(I+J)=0.0

o - " DO 65 K=1,JMl
65 A(IsJ)=A(IsJ)=A(I+K)*ATEMP(K)*AFLAG(K)

TAFLAG(J)Y=0.0"
FAC = DOT(NCyNCollsdsJ)

FAC =71.0/SQRT(FAC)
GO TO 75

70 AFLAG(J) = 1.0

___FAC= 1.0/5QRT(DOT2)
75 DO 80 I=14NR

DO 85 I=1,NC

85 UllsJ) = ULI,J)*FAC
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100 CONTINUE

DO 130 J=14sNC
DO 130 I=14NR

FAC=0.0
_ DO 120 K=JsNC

120 FAC=FACH+A(IsK)*¥U(JsK)
h 130 A(I,J) = FAC

RANK=0
DO 132 J=1,NC

- " *RANK=RANK+AFLAG(J)
’ 132 CONTINUE

. "PRINT 133, RANK
133 FORMAT(//93Xs THRANK = 51E1548)

RETURN

END
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€ COMPUTES THE INNER PRODUCT OF COLUMNS JC AND KC OF MATRIX A
DIMENSION A(801520)
DOT = 0.0 _ _ .

DO 5 I = 1,NR
5 DOT= DOT_+ A(I,JC)* A(IoKC)

e o S s i e =

RETURN

'"IT FOR SUB5
FUNCTION DOT(MRsNR3AsJCsKC)
_..END_

P | ' W
B , j

76




e

04/29/68 T TTg0s80 LIST
'IT FOR suB6 B ,
SUBROUTINE DKPHI( KP1 » I » DPHI )

DIMENSION DPHI(1) ~ ' o

T TCOMMON /SCALEZ P
C THIS ROUTINE CALCULATES THE I DERIVATIVE OF THE (J-1)

C 7 LAGUERRE FUNCTION AND STORES IT IN UKPRI(J)
= DO 1 J =1 KP1
I =J =1
IP1 = 1 + 1
- .SUM=00
DO 2 K =1y IP]
IX2 = K =1
e 4 = [ = IX2_
TERM = BCOF(19IX2) * BCOF(IJsIX&) * ( 2o *¥ (=K+1) )
SUM = SUM + TERM

1}

IX = (IJ+ 1) /7 2
IX = IX * 2
SIGN = = 1,
CIF ( IX _«EQe ( IJ+I) ) SIGN = 1. .

DPHI(J) = SIGN % SQRT ( 2 * P ) #* ( 2o * P ) * % | * SUM

.1 CONTINUE

2 CONTINUE ) 7 -

RETURN
END

i i e o ot ——— . AR TR Miel . e — 77
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FUNCTION B8COF (T » J )

’,-}A o XI =1
CXd = J
XIMJ = Ime

P = le
IF

%
!

GO T0O 3

"GO TO 2
XJ = 1o

- o~

T
IF

O

" XI = 1.
Qe 0 ) XIMJ = 1.

s
Ik

[ S
[
m
[»]
. .
MO O O —
v‘vﬁp——

Q o~ o~
-
—
|
o
~
L ]

"1 K=1,1 S
P=p % ( XI / (XIMJ * XJ) )

- b

0

T T T T T IR (T{I=K)  eGTe 0) XT = XI = 1.
™ IF ( (J=K) «GTe 0 ) XJ = XJ = 1,

e ’ IF ( (I=J=K) «GTe 0 ) XIMJ = XIMJ = 1.

1 CONTINUE
SN TTTTTTTT T 2 CONTINUE T
BCOF = P

e n ST URN T
D 3 CONTINUE

Tt T T "BCOF = Qe
RETURN.

O 7 777 END

,

—
o~
-~ —
- i
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FUNCTION PHIL(T)

€ *x%x%xx DEFINE THE FIRST_ ORTHOGONAL FUNCTION ¥*¥¥¥

"COMMON /SCALE/ P

" RETURN
END

PHI1 = SQRT( 2« * P) * EXP( =P * T )

e e ‘
SRS - J—
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'"IT FOR SUBY
T T FUNCTION PHIZ(TY
C xx%%% THIS SUBROUTINE DEFINES THE SECOND ORTHOGONAL FUNCTION X3
COMMON /SCALE/ P
PHI2 = SQRT( 2 % P ) % ( 2.%P¥T = 1. ) * EXP( =P * T )
RETURN
\ ... END_

~
> _
~ e . S -
e o e N
e e _ . i
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'IT FOR SUB1O

" xxx%x OF HIGHER ORDER ORTHOGe FNS

80/80 LIST

“SUBROUTINE RCSN ( PHI » 1T s N » T )
#xx%% THIS SUSe DEFINES THE RECURSION FORMULA FOR THE
*****

GENERATION _

COMMON /SCALE/ P

""DIMENSION PHI(2,1603)

DOUBLE PRECISION PHI s TEMP

e e g
g

o~ e

)

Senr

—

™

XN N
TEMP =(( 2%P%T ~ 2.¥XN = lo) * PHI(2,1) =

/7 (XN + 1. )
PHI(1,1I) PHI(241)

T PHI(2,1) = TEMP
RETURN_

END
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Appendix B

The Subroutine Micare
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SUBROUTINE MICARE ( SSUBR, N, TOLI, NST, H3, IDERK)

I. Purpose
We are given the N vector S = {sk} and wish to find an

r-dimensional, constant linear dynamical system, [c, ¢, Y] in companion

formywith ¢ = [1, 0, ..., O] such that, approximately,

cd = 8, k=1, 0o, N

This is the primary task of subroutine MICARE - the implementation
of the B. L. Ho procedure.

In addition, however, it calls subroutine CPC (see MSG PD-67-102)
in order to obtain an r-dimensional, constant linear dynamical system

[c, A, b] in companion form, with ¢ = [1, O, ..., 0] such that

c ekﬁA b= sk+1, k=0, ..., N-1.

Essentially CPC finds the continuous-time system [c, A, b] from
which the discrete system [c, ¢, Y] arises. This is under the assumption
that the input vector s 1is the discretized (at interval o) time history
of the impulse response of some linear constant dynamical system.

It can happen that the vector s contains the leading coefficients
of the expansion in powers of 1/s of a transfer function (the laplace
transform of the impulse response). This is, in fact, the originally planned
mode of operation for the procedure. In such a case the call to CPC is
superfluous. The application for which MICARE was written usually requires
the use of CPC, however, and furthermore CPC provides the eigenvalues of

¢, so no provision was made for avoiding the call to CPC.
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II. Operations - Calling Sequence

The vector s is entered in the array SSUBR: N, the dimension of
s, 1is given in N; TOLL is a zero tolerance used in subroutine RAKAR,

for details see MSG PD-67-103; NST gives the starting dimension of the

square Hankel matrix

used in the B. L. Ho procedure (see Procedure and Mathematical Analysis
below); the discretizing interval o is given in H3; the maximum rank
allowed, r, is given in IDERK.

Lanéuage'is FORTRAN 1V, no tapes are used.

The dimensions in MICARE and its required subroutines allow for

N to be 50, the Hankel matrix to have dimension 20, and r (contained in

IDERK) to be 15.

III. Printout

A fair amount of intermediate printout is given because it was
required in the original application.
The zero tolerance, TOLl, is printed.

The input vector § is printed.

The dimension of the Hankel matrix which was used for computing the

realization is printed as KML.

-~

The vector S as computed from the realization is printed as

ESTIMATED VECTOR.
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1f a larger-than-expected error between S and $§ is encountered,
gsee VI and VII for details, a print IFLAG is made indicating the component

in which the difference occurred.

After the system is put in companion form, S is recomputed to
establish the accuracy of the similarity transformation.

The output coefficients ¢ = (1, 0, ..., 0] are printed.

The systém matrix ¢ in companion form is printed.

The input coefficients y are printed.

The program then transfers control to CPC which itself generates
output (see MSG PD-67-104) terminating in the logarithm system [c, A, b]

in companion form.

Control returns to MICARE which, if IFLAG was not printed, will
print a stagement that the realization was successful. If IFLAG was
printed it returns to increase the order of the Hankel matrix. If this is
not possible, a message is printed. If the matrix was enlarged because of
an IFLAG print but the rank did not increase, the message,

NIX EQUALS ONE AND RANK EQUALS RK

will be printed.

IV. Subroutines

The matrix decomposition routine RAKAR (see MSG PD-67-102)
The system logarithm routine CPC (see MSG PD-67-103).

The S generating routine SVCAP.

The inner product function DOT (for RAKAR) .

The polynomial root solver MULLER.

The inversion routines MATINV and MINV.

V. Restrictions and Comments

None
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VI. Procedure

Circled numbers, e.g., @ are external formula numbers in

the FORTRAN source program.

Set the maximum dimension of the Hankel matrix to N/2.
Put NST + K, O -+ NIX, 0 - RK, 0 -+ IFLAG.
+

© If IFLAG# 0, go to (0 .

Set up the K-dimensional Hankel matrix H and call RAKAR for

the rank RANK. If RANK = RK, go to .

+
@)  Put 0 > NIX, RANK > RK.

Using other output from RAKAR, define TR and -TL such that

TLHTRBII_

where Ir is a RANK-order identity matrix. If the order K of H 1is

not maximum, go to @ ; otherwise print

RANK NOT STABILIZED BUT WE HAVE REACHED MAXTMUM DIMENSION.

Then set K+ 1 + K and go to @ .

@9 K+1-+K

If K ¢ max dimension, go to ©O .

RETURN

*x % * % *x *x * %

@ 1f N1x$0, goto ©

If RK =0, go to @
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C{) Put K~-1 KMl and print this number which is the dimension
of the H used for the representation.

Set up the matrix and vector

s, 53 34 - s1
X = -
H ' s3 34 s5 e s2
- - )
_Sx1
and compute
X = *
¢ TL H TR ’
ck = hf TR ,
% =
and Y TL h .
¥

Call SVCAP to produce S = {s.} where S, . = c* ¢x] b*, § = 0, ..., N-1.

j j+1
Let
2s, -8
EPSIL = max 1077, T i s,j .
1gjs2K-1 h

If RANK is governed only by a small TOLI, that is, not comstrained by IDERK,
then EPSIL should be reasonably small.
+

!é -8 \\ .
We now check, for j = 2K, ..., N-1, if | EPSIL -3 jl ! is
' 1+ lsjl//

always positive, If it is not, then for the first index, L, for which

it is negative, we set
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IFLAG = & ; z

This IFLAG is the dimension of the smallest Hankel matrix which
will inclu&e the offending term and thus give a more accurate representa-
tion, either in terms of rank, if'that is free, or in more evenly distributed
error.

Notice a print of IFLAG indicates an error in matching the
2*%IFLAG-1 or 2*IFLAG-2 element of S.

+

Whether or not IFLAG is printed we now prepare to put the system
in companion form. If the system order is one, we ship this transformatioa,
going to @ .

¥

Because the system is a minimal realization of a transfer function,

it is completely controllable and completely observabie.

We thereform form the matrix

c* _T
c* o*
T = -
| o o kRANK-1
invert it and form
o= T ok T T .
c = c* T-l R
and
Yy =T y* .
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(If T is singular, a message to that effect is printed and

we RETURN.)

We compute g by the Acompanion form system and print it.

¥
@ We print ¢, ¢, and y.

¥

The matrix ¢ is put exactly in companion form by putting true

zeroes and ones in the proper places. The same is done for c = (1, 0, ..., 0).

+

CPC is called.
+

(If K = max dimension, then we have previously printed a maximum

dimension message so we RETURN.)

+

If IFLAG# 0, go to @9 .

+

Print message that realization is good and RETURN

x % *x % *x % *x *x * *

IFLAG is the desired dimension of H. If IFLAG - K > 0, go to

® ®

0 + IFLAG, 1 - NIX

x k k k k * % kx k x x * % %
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This path is taken if an error occurred in approximating S by

§ (IFLAG # 0) but when H was increased to the proper dimension the ranmk
did not increase. This could have occurred because IDERK constrained the
rank or simply because in the context of higher dimensional vectors with
'larger norms, the error simply was not significant. Go to @ .

* % * % % * *x *

This path is taken if the rank (therefore H) is zero. If K

is not yet at the max dimension, go to .

¥

Print NULL MATRIX and then RETURN.

* % % * % *x *x %

VII. Mathematical Analysis

1. The B. L. Ho Procedure.

Definition: An infinite matrix is said to have rank r if the maximum

rank of any finite submatrix is r.

Proposition 1: Let [¢, A, b] Dbe an nth order c.c and c.o. stationary
system, with impulse response c¢(t)b. Denote $(8) by ¢. Let

H= [hij]’ where

hyy = co(L+1-2)6)b = oty |

be an infinite order matrix. Then rank H = n,

th

Proposition 2: Let [c, A, b] bean n order c.c. and c.o. stationary

system with impulse response c¢ (t)b = £(t). Represent f£f(t) in its

taylor's series expansion

T % k
_t .
kzok!
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Let H = [h,,], where

1]

By ™ 214922

Then rank H = g,

Proof: Clearly a = cAFb, since a = f(k)(O). Therefore

I
SN

Also the matrices

W, = [b, ¢b, *=- , " 1b)
and |

W, = [b, &b, *++ , A%7b]

are both nonsingular by complete controllability, as are the comparable
observability matrices. These remarks reduce the. two propositions to omne.
We shall prove proposition 2.

The n x m matrix (m 2 n)

2

W = [b, Ab, A“D, =+ ]

has rank n, as does the m x n matrix M,

M,' - [C', A'c', A'Zc', co e ] .

Let v denote the elements of MN. Then

13

v’ij RN L% R L

That is MN = H.

91



Sylvester's inequality states that

rank M + rank N = n ¢ rank MN < min(rank M, rank N) ,

in this case
n £ rank MN £ n .,
Therefore for all m 2 n, rank H = n,
Remark: Let F(s) =L £(t) =ﬁ-%:—')l.
Then deg p < deg q. If F(s) is expanded in powers of s_l,
T "

F(s) = z ’
k=0 Sk+l

then the a_ are the previously defined taylor coefficients of f£(t).
This follows, of course, from the fact that

k k!
£t ss_l('o

Proposition 3: Let h = [hij] be an (infinite) hankel matrix (i.e.

h for some sequence {vk}) with n the maximum rank of any

1j ~ Vi+j-2
submatrix. Then there exists a triple [c, A, b] such that

o oalti=2
hij cA 2b vi+j—2 .

Lemma: For such an H, the first n rows {Ri}; are linearly independent.
Proof of Lemma: Since every (ntl)-rowed submatrix has determinant zero,
the first n+l rows are linearly dependent. Therefore there exists a

number r £ mn such that Rl’ Ry *** Rr are linearly independent and

ril
R - Y
25 BN akRk+;
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From the cyclic character of a Hankel matrix, we see that

r-1
Rhtqtl © kzo AR il

and therefore every row can be expressed interms of the first r Trows.

It follows that r = n.

Proof of Proposition 3: Let [ao, ags an-I] be the vector

defined in the proof of the lemma. Then

= ca

Yk
where c= (1, 0, *++ , 0)
- bl = (vo, vl’ R , vn_l)

and A is the companion-form matrix with last row

[ao’ s L an-l] *

Our conclusion from these three propositionms is that a hankel

matrix has finite rank n 1iff its sequence is generated by an nth

order dynamical system.

2, Computation.

lLet H be a hankel matrix of rank n and let S be its first

nth order principal submatrix
—- .
Vo TV Va-1
S = ceo
Va-1 """ Von-2 .
L -

By an extension of the lemma, this has rank n.
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Compute nonsingular matrices L and R such that

LSR =1 ,
n
It follows that § T = RL
Let
vl L N ) vn
*

S - oo

Va **" Van-1 J

denote the second nth order principal submatrix of H, and let

1.

b= [v,, vp, tt Vo

We know that

*
S = AS

where A is the matrix defined in proving proposition 3.

Compute

*
¢ =b'R,

*
b =1Lb ,

B *
and A = LS R'= LASR. Then

* *
cb =Db'RLD= (1, 0, °°° ,O)b-vo

and

c*A*kb* - b'R(LASR)kLb = b'RL(ASRL)kb = cAkb .
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To provide additional smoothing we compute with

vo o0 vm-l
s = e e
. Vo-1 77 Vop-2 ]

The first mth order principal submatrix of H, where m is much
larger than n = rank H.

We find matrices L and R of rank n such that
LSR =AIn
and
"SR = L' .
Lemma: SRLS = S.

Proof: Since SR =L' and rank L = rank S, L is nonsingular on

range S, therefore the fact that
L(SRLS - S) = LS - LS =0,

implies that SRLS - S = 0.

Let
= -
Vi " Ve
*
S - oo
vm+1 L Y vzm-l
- -

be the second mth order principal submatrix of H.

~ *
We can define an m by m matrix A such that S = AS,

In the 3 % 3 case, if
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then

| o - e e . J

to the size required.

The important thing is that b is the first column of S and

Akb is bk+l’ the (k+1)St column of S (or the first m rows of the (k.+1)St

column of H if k 2 m).

We compute

*
¢ =b'R,

*
b =1Lb ,

i & * -
A =1LS R = LASR .,
Then
* %
cb =Db'Rlb = v,
by the lemma.
*** -~ ~
¢ Ab = b'RLASRLDb = b'RLAD
by the lemma.

But Ab is the second column of S so b'RLAb = v again by
using the lemma.

In general

EaM%* o brREASR)TL = b'RL(ASRL)'®. ‘
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By induction we can show that

(ASRLYb = bys -

Since bk+1 ¢ range (S8), it follows by the lemma that

- ] -
b'RLb vk . Ny

k+l

Remark: Notice that RL need not be the generalized inverse of S

but must satisfy only

SRLS = S.

3. Mechanization.

Starting with H of dimension NST we find matrices TL, TR

such that

TL H TR =1

where I 1is an n-dimensional identity, TL and TR are saved.
Increasing the dimension of H by one we replace TL and

TR by their new values if the rank increases.

If the rank is unchanged, either because of the comstraint IDERK
or because the rank is the same within the tolerance TOLl, we use the TL

and T from the previous dimension KM1 as follows.

*
The matrix H of dimension KMl is formed

3 ) . e b .

* *
Then the system matrix is ¢ = TL H TR , the output vector is

*

c = [sl, see sKMllTR , and the input vector is
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Appendix C

Program CPC
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SUBROUTINE CPC (S, IRANK, B, C, DT)

Purpose: We are given the n x n companion form matrix ¢, vectors

G and H, and a time increment &. We wish to find an n x n companion

form matrix A and vectors B and C (C= [1, O, O, ... O]) such that
ce*®s = wg¥c, x = 0,1,... .
Basically we wish to find the logarithm of ¢.

Operations - Calling Sequence: The matrix ¢ is entered in the array S

and the output matrix A will be returned in the array S. The dimension
of ¢ is contained in IRANK. The vectors G and H are in B and C
respectively and the output vectors B and C will be in the arrays B

and C. DT contains .

The dimensions in CPC, MULLER and MATINV are fixed at 15

except for the vector of coefficients of the characteristic polynomial which

is fixed at 16.

Language is FORTRAN IV, no tapes are used.

Printout: A fair amount of intermediate output is given because it was

required in the original application.

The roots of the characteristic polynomial are printed.

The numbér of complex roots is printed.
The real diagonal form T-1¢T of ¢, as computed, is printed.

The continuous system is printed in real diagonal form and finally

the continuous syséem (C, &, B) is printed in companion form.
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Subroutines: A polynomial root finder, MULLER 1is called once.

A matrix inversion routine, MATINV is called twice.

Restrictions and Commentary:

1) Naturally ¢ must be nonsingular.

2) ¢ cannot have repeated eigenvalues. In practice this is
not a very serious restriction. Numerical difficulties may occur when
roots are close to each other.

3) Early in the program, eigenvalues A = x + iy are assumed
to be real and positive if they satisfy

__—lll— < 10_7

1077 + |x|

Theoretically‘this is a vulnerable point. If there is a complex pair of
¢ with small imaginary part, trouble can occur. However, this is essen-
tially covered by the restriction that roots must be distinct. Perhaps
more important, a complex pair in F can, for proper values of the time
increment, give rise to a coincident pair of negative eigenvalues of ¢.
However, we do not expect this to occur because good engineering practice

will dictate that the time increment used to generate ¢ will be selected

less than half the natural period.

Besides which the condition is highly improbable under any

circumstances.

4) This program, because of the application which evoked it,

assumes that the pair [H, ¢] 1is completely observable. This is clear

from the output form of C and A.

Procedure: Since ¢ is given in companion form, the characteristic
polynomial is immediately available. This is factored to obtain the

eigenvalues of ¢. If the eigenvalue A = x + iy satisfies
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_JlL—— < 10-7

107" + |x|

the eigenvalue is taken as real -and positive, otherwise as complex.

We set up a complex n-vector with the complex roots first and

the real roots last.

The eigenvalues of ¢ are printed. The number of complex roots

is printed.
The generalized Vandermonde matrix T 1is constructed which

transforms ¢ to its real diagonal form, R.

T is inverted to form T-l.

HT and ¢T are formed.

T-lc and T-1¢T are formed.

T-1¢T is printed. The computation and subsequent printout of
T—1¢T is done purely as a numerical check since T-1¢T will be assumed
to have the correct real diagonal form R and its computed value destroyed

after printing.

M= ldg R is constructed and printed. Following this, the

matrix
— —
HT

S = | HTM

re e
W p—

is formed, and finally the desired matrices

c = urs~t

A= smust

B = ST 3G

are printed.
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Mathematical analysis:

1) Real diagonal form and generalized Vandermonde:

If a matrix ¢ has only real eigenvalues, its real diagonal

form A is its diagonal form and the matrix T transforming to A is

the Vandermonde

T‘1¢T = A.

i-1
Wh t,, = A, .
ere 13 j

If there is a single complex pair a + bi then we take

1 0 1 0
T = 71 .
a 1
a b % b
- el l____ p—
"
0 1
¢a
-(32 + b2) . 2a
and — —
— —
a b
14T = ]
-b a
N |

We call this the real diagonal form for this ¢. In general,
if there are r complex roots, the real diagonal form for ¢ is the
direct sum of r such 2 x 2 matrices and an (n - r)-dimensional
diagonal matrix. The jth column of the generalized Vandermonde T

i-1

corresponding to a real root Aj is tij - AJ . The columns, say 1

and 2, corresponding to the pair Al = a + ib and Az = a - ib are
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til = Re(l1 )
i-1
tiZ = Im()‘1 ).

The first such column starts

1, a, az - bz, a3 - 3gb2, .:.
the second suc§ column starts

0, b, 2ab, 3a’b - b>, ...

2) Logarithm of the real diagonal form.
Lét R denote the real diagonal form.
The logarithm of the diagonal part of R 1s very simple
being the diagonal matrix M whose elements.are the logarithms of the

(positive real) diagonal elements of R.

" The rest of R is the direct sum 6f 2 x 2 matrices of the

form

The logarithm of this matrix is

-1b

log(a2 + bz) tan © =

i
—tan-l'% 1og(a2 + bz)

The nondiagonal part of M is the direct sum of such 2 x 2

matrices.
As is well known, the logarithm is not uniquely defined. Naturally

we take the smallest value of the imaginary part which will give the correct
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SgM1 .

b -

- * kk-] *
The impulse response Sk =c ¢ Y

of this system is
compared with Sk’ the system is put in companion form, and the logarithm
system computed.

If a reasonable approximation between S and S was found,
we RETURN., If a term was too much in error, the dimension of H is

increased to include that term in the next system. This proceeds until

a good fit is obtained or the S vector is exhausted.

VIII. Appendices

Attached are listings of: a main program used to generate data
and call MICARE; MICARE; DOT; RAKAR; SVCAP; MATINV; MINV; CPC; MULLER;
and the output produced by the data. Notice that the system generating

S need not be stable.
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5 0 0 -0

O

()‘

O

MAIN1

EXTERNAL FCRMULLA NUMBER

DIMENSION S(EC

" SOUKCE STATEMENT

INTERNAL

0271
F

b P e e et R o et

T "N = 29

o TOLLl = «0CCC1
NST = 18  ° e - e
H3 = o]
IDERK = 3 7777 .

o D0 2 I = 1, N

S XI = 1

. T (XI = le)*H3
N S(I) EXP(Ze%T) + 10e¥(EXP(=2.%T)) ™

2 CONTINLE

-
=

"= CALL MICARE (SyNyTCLIWNSTyH3,IDERK) T~ === -
) END
"7 PROGRAM SHCULD END WITH A STCP, RETLRN CR TRANSFER STATEMENT ==
_____RETURN STATEMENT SIMULATED.
SOURCE ERRQR_27¢' FEVEEM£°__MWhARNIAG CNLY.
e 14
e - — . S e g -
________ _ e 104 S



e MICAL 02/1
o EXTERNAL FCRMULLA NUMEER -  SCURCE STATEMENT -  INTERNAL F
M~ _ SUBROUTINE MICARE (SSUBRs NyTCL1sNST,H3,IDERK)
C THIS SUBROUTINE CGMPUTES A MININMAL COMPANICN FCRM (TRIVIALLY 7"
_C_ 10BSERVABLE) REALIZATICN GFA CYNAMICAL SYSTEM, INPUT SSUBR IS
N c 1 FIRST N TERMS OF Tht IMPLLSE RESPUNSE EXFANCEL IN POWERS OF 1/5e.
v _C IMETHCD OF Bele FC
| e G PO
O DIMENSION SSUBR(EC), S(2(,200, RT(20,20), RCCDE(20), TRR(20420),
. 1 TRL{2C,2C)y BL2C),y C(20), SCAP(50) ' ' e
‘ o NWR 1S SYSTEM NUMBER FCKR WRITEUMIT
AT N = 3 e R e e o b e et o
- IDIM = 23
—— NI = e BN
D) IFLAG = C
T i - - S
‘ WRITE (NWR, 4)
O T 77T 4 FORMAT(1HL) T
b WRITE (NWR,202) 1CL1
3D 2 FORMAT(//,5X,12FTCLERANCE =7 4E15e87)7
Yo WRITE (NWR, S)
TS FORMAT(//10X, 1ZHINPLT VECTCR ~ " /)y == =
WRITE (NWR, €) (SSUBR (I)y I = 14 N)
o FCRMAT (€EE2C.€) T T T
c | A
o CTHANGE N TO " MAXIMUM DIMENSICN
N N = N/2
- M3s2eN S .
c
A~ T C T UBEGIN MAIN LOOP T T T
. DO 2¢ I = NST ,» N
o GO Y0 60 TF CERTAINTVALLES CF 1 SHCULD BE CELETEC™
- IF (IFLAG) 8,8,¢€C
: e
c
~ c ~ SET UP THE FIRST MATRIX FRUF THE SSUBR VECTCR o -
DO 10 L = 1,1
D010 MTETIGI
- L5 = L+M
— L0 TS(L, M) = TSSUBR(LS-1) T T T T T e e
o .
= T CTTTT60 TC RAKAR FOR RANK, ™ ORTHCNGRVALIZED S, AND ™ CRTHONOFMALIZINE =7
c 1 MATRIX RTe
ToLZ2 ="TOL1
RANK = IDERK
"CALL RAKAR (SyRT3RCCCEWRANKIDIN,KyK,TCLZ) T B
c
~ c IF RANK IS INCREASINGy CCNTINUE 77— = " 77777770 777 T
IF (RANK-RK) 1E&,18,25
c -
n c IF S IS A NULL MATRIX OETERMINE IF SSUBR VECTCR IS EXHAUSTEC
S e L AN I —
18 IE (NIX) 20 » 2C o 19
~ T 19 TWRITEINWR,7) ~—~— 7 T TTooTommmTmommmmemmmm e
) GO TC 25
7——FORMAT(36H NI X ECUALS CNEAND"RANK E CURLS™RK4)
L 20 IF (RK) 20y 2Cy 35
. - A0S




)

~

O

O

0

)

02/1

o MICAL
T " EXTERNAL FCRMULLA NUM3ER - SCUFCE STATEMENT - INTERNAL F
~=——C"" " " °IF SSUBR IS A NLLL VECTICR PRINT MESSAGE ANC RETUFN
3D IF (N=1) 31, 31, 26
T3 WR ITE (NWR, 22) B -
~ 32 FORMAT (//71CXy 12RNLLL MATRIX )
T R ETLRN
c :
s @ IF RANK IS STABLE wE CONSTRLCT A REALIZATICMN ANC START Y =7 77
~C 1 CONSTRUCTING THE SECLND MATRIX FRCM THE SSUER VECTGR
o 35 KMl = K = 1 ’ S
WRITE (NWR,303) KMI |
i 303 FORMAT ( // 4 5X + SHKNL= 415 4 // ) ‘ ’ IR
DN 4C L = 1,y KMI1 |
PO 40 MT=T1, KM1 o
L5 = LM
40 SIL.M] = SSUBR(LS) — L L R
. IRANK = RK + .1
e L . L o
c PUT THE SYSTEM MATRIX IN S, INPLT CCEFFICIEMNIS IN By CUTPUT
—TTTCTTTTTL T COEFFICIENTS INTCo
DO 42 L = 1,y IRANK
e 8(L) = 0. DU
DO 42 M =1, KM1
T RT(L,M) = Qe - T T N
D0 42 M1 = 1, KM
“437  RTILM) = RT(LyM) ¥ TRUTIL ML) "% "S(MLy M)
42 B(L) = B(L) + TRL{L,M) # SSLBR(M)
T 41 L o= 1y IRANK T T . - T T T T
L c(L) = 0 -
i DO 41 M % 1, IRAM T T T -
S{LyM) = O
DU 44 M1 =1, KVM1— T s -
44 S(Ly¥) = S(LsM) + KT (LML) % TRR{M14¥)
TTTTTTTTLY T CUL) = C(LY 4+ SSUBR(M) ¥ TRR(NM,L)
c
I COMFUTE THE S=-ESTIMATE VECTCR =~ 77 7~
CALL SVCAP(5+34Co A,IRAAK IDINM,SC2P)
81 WRITE ENWR, €4) = ===
, 84 FORMAT (// 10X, 16FESTIMATED VECTGR /)
T WRITE (NWRy €) {(SCAP(L)s L = 1y ¥3)  — 77 T T T
L IF (N=K) S€4564¢7
T 97 EPSIL = Ce T T T
M8 = 2%K = 1
ST D 47 L=l ME T
STLDA = 24%ABS(SSLsk(L) = SCAP (L))
T 47 EPSIL=AMAXL(EPSIL,STLDA/Z{1le+ABS(SSUBR(LYI) ™ ™ = Tt
c
TTTTTCTTTTTEPSIL IS THE MAXINUM RELATIVE ERRCR OF THE “TFECRETICALLY ZERC
c 1 ERRORS .
TT—EPSIL = AMAXI(EFSILyleE=7)""" S
M8 = M8 +1
e 50 50 L = NEM3 e
STLDA = ABS ( SSUBR (L) = SCaP (L))
TTTTERRCR = STLCA/Z(1e. ¢ ABS (SSUBR{L))) T T T e e
48 IF(ERRCR=-EPSIL) 5C+5(,51
51" TF{IFLAG) S2¢525EC 7 mrmmmmmme o e -
52 IFLAG = (L+2)/2
= et e
106




™

L MICAl ) 02/1
EXTERNAL FCRMULA NUMBER - SCURCE STATEMENT " = TTINTERNAL F

|

\

JOR SISO PO IROIR NE SI

c o | L .

€ A PRINT OF IFLAG INCICATES AN ERRCR IN FATCHINT THE
c ( 2% IFLAG = 1 ) OR ( 2 % IFLAG = 2 )~ CCVPCNENT OF THE INPUT
c

B VECTOR »
T R T TE ANWR § 45) IFLAG R F e e e e e e
GO TO 372
e A 5T UFORMAT(TEOIFLAG=IZ) T T T T T e
] 50  CONTINUE
) C FORM TRANSFORMATICN MATRIX
e g9 UTIFE( IRANK=-1) 38,38,66 0 T oo ) T
96 DC €3 M1 = 1, IRAMK
U5 3TTUURT(1L,M1) = C(MLY T T
49 NO 54 L = 2y IRANK
s =50 B4 M o= 1, IRANK - . . . UV
RT(L M) = Co

TTTTTT T U DO 54 M1 o= 1, IRANK T T T

54 RT(LsM) = RT(LsN¥) + RTIL = LsVM1)¥% S(NML,VM)

C THIS”HAS‘FURMED“TFE“NATRTX“TRANSFORMINGWTC”CCMPANXCN‘FORﬂs

DO 71 L = 1, IRAMK

T TTTTTTTTRCODE (L)Y = Ce T
DO 71 M=1,IRANK

s e TRL {(LeM) = Do o ) oo - T T

DO 7C M1 = 1, IRANK

70 TRL([}Hl_g—TRL([TMT'*"RT(Liﬂl)*“S(Vlbﬁ)

71 RCODE (L) = RCCOE (L) + RI(L MI*B(M)
c it o RMRUE A T T
c OBTAIN THE INVERSE CF THE TRANSFGRMING MATRIX
e ANR . TRANK ™ = e e e e e
ToL2 = TOL1
CALL—RAKAR™ U™ RT3S7 By RANK 7 TIDIM, IRANK, IRANK, TCL2) - -
IRK = RANK ¢ ol
IF"(IRANK-IRK)“eziez.63““"‘*—“““”“ﬁ“"“*“““"““**“*"“”" -
o
o THE”TRANSFURMATICN”MATRIX‘]S’SINGULA(“PRINT'PESSACE'AND'RETURN’”"”“
63 WRITE (NWR, €4)
6%~ FORMAT (/7710X5 32K TRANSFCR¥ATICN MATRIX"SINCULER ot R
RETURN
c ~ e e - —
c THE TRANSFORMATIGN MATRIX IS ANCw FCUND
TR 2TTTT UUCD 6T L= 1y IRANK — 777 T T T
DO €7 M = 1, IRANK
TRR™(LyM)=70% :
DO €7 M1 = 1, IRANMK
e g == TRRALGM) = TRR AL M)+ S(Ly M1 ¥ RT{M5M1) e -
c :
o “ FINALLY PUTA,8,C 1IN CCMPANICN FCRM B
DO 76 L = 1y IRANK
BILY =T ‘ ‘
DO 7€ M = 1, IRANK ‘
S(L M) 5 00 e - S
DC 77 M1 = 1, IRANK
R { =S (LMY = SULM) + TRLUL ML) % TRR(ML,M) - S
76 B(L) = B(L) + CIMI*TRR(N,L)
DO 78 U= 17 IRANK
c(L) = B(L)
_ A0 e e
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EXTERNAL FCRMLLA MNUVMBER - SCURCE STATEMENT - INTERNAL F
78 BE(LY = RCCDE (L) T e
c CCMPUTE SIGNAL £ESTIMATE FRCM CCMPANICN FCRM,
A o YW R SVCAP (S,B4Cy Ny IRANK, ICINM, SCAP) = 7mr—
. 82 WRITE (NwWR, E€)
86 FORMAT (//1CXy27FVECTCR FiClM CCMFANICN FCRVM OPERATICN /)
WRITE (NWR,€) {(SCAP(L),y L = 1,¥3)
U337 7 WRITE (NWR, 3G) o o
i 39 FORMAT(//19X, 2CROLTIPLT CCEFFICIENTS /)
R WRITE (NWR,&)(C(L)y L = 1y IRANK)
WRITE (NWR,y 37)
37 EORMAT (//1CX, 14HSYSTEM MATRIX T~ /) T
DO 3¢ L = 1, IRAMNK
T TTWRITE (3,101 000 - -
_ 101 FORMAT ( /7 )
T 36 WRITE (NWR,E)I(S(LoLL)y LL = 1y IRANK) T
— WR ITE (NWR,34) B oo T T T e e
34 FORMAT(//10X, L1SHINPUT CCEFFICIENTS /)
ST WRITE (NWRLEIIBIL)Y T LT 1y TRANK)
IRNKM1 = IRANK = 1
R IF ( IRANKM1) 3224,2C4,308 7 - T
395 DO S& IX1 = 1, IRNKMI
- ClIx1 + 1) =0 T T e e
(o \
”‘ TTPO S ETIX2T=E 1Ty T TRANK -
c
S{IXl,IXz2) = Ce T B T T e e
IF ( ( IX1+41) oEQe IX2 ) S(Ixl, IXZ) = 1l
C A : 1 e bt fe 1= St . ~ R
98 CONTINUE
304 CONTINLE T
C
T T CALL CPC U S Ty IRANK BTy C 9 H3T)
IF (K=N) S1,3CCy55
TTTT UUUTTTQ1 O IFUIFLAG) 3CC.2C(C,26 T T -
60 IF(IFLAG=I) 11,11,2¢
11 IFLAG ="C
o NIX = 1
I 60 TC 8 T - T T T
25 L =1
- T RK = RANK T T '“ -
NIXx = 0
DOES M =17 K
IF(RCODE(N)) SE5,$5,27
I & A DO 28 M1 = 1,1 - T T T
TRL(L,M1) = S(M1,M)
T 28 TRR{M1,L) = RT(MLlsM) T T T - T
L =1L +1
95 T CONTINUE T -
IF (I-N)2€,9C,SC
TTTTTT 90 WRITE(NWR,1CC) 0 T i o T T T
100 FORMAT(//10X,60FRANK NCT STAEBILIZED BUT WE HAVE REACHEC MAXIMUM ox
T LMENSICN ) T ST o o
K = K + 1
GO TO 38
26 CONTINUE

108 .
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EXTERNAL FCRMULLA NUMBER = SCURCE STATEMENT - " INTERNAL f

e e e o ¢ o i o e e ot o b @ s b T ]

55T RETURN

300 WRITE(NWR,201)
301 FORMAT( 115+ THIS RtALIZATICN IS SUCCESSFUL, ALL COEFFICIENTS

1 HAVE BEEN MATCHEU BEFCR: REACHING THE MAX CINMENSICN )
—~RETWRN ALY OLPLRE TRy s R D LTIl
END

S 109 e I o
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EXTERNAL FCRMULA NUMBER -

e e e s B S b ki 1 MR AAP S s b e

FUNCTIGN OCTUICIMyNCoA,led) 7 -

" "SCUKCE STATEMENT

o 02/
-" T INTERNAL

[ra.

DIMENSION A(ICIM,IUIM)
boT = C
D01 K=1l.NC T oo T
1 DOT = COT + A(K.I)%Alk4J)

RE TURN

LU S — e~ E.N D,A. an aname = e e el v - ———— - emsmie -~



e 7 RAK1 _ 02/
EXTERNAL FCRMLLA NUMBER -7 SCURCE STATENENT - T INTERNAL
- SURRULTINE RAKAR ( & 4 RT o KLCGLE » RANK ICIP hC.NR TCLI)
77 O DIMENSION XIP(2C) ‘
o DIMENSIUN SCIDIM,IDIM)y RTLICIM,IOIVM), RCCCECICIMY
C SET UP IDENTITY MATKIX o
100 D3 1C I =14NC '
ne— § F5 D 1 T B 1, NC— i e -
11 RT(I,J) = 0O
Tttt RCODE(IY = C h ) T B
10 RT(IsI) = 1o
=€ 7 INDENTITY MATRIX HAS BEeN SET LPe ‘ - o e .
C
C "FIND FIRST NONZERG CCLUMN CF-INPUT ===
DO 20 L = 1sNC
XMAG= DOT(IEIM '?\R 'S 'L,L)
e — e CIF XMAG ) 20,2C,21 - T e et et o= e —
20 RCOCE(L) = C
ot TNULL MATRIXTEXIT™
c
—mmeeem eees oot D ETURN A R [ e
21 XMAG = 14/SORT(XNMAG)
7 C ~===—FIRST NCNZERO CCLULMN AND ITS NCRMALIZING- FACTCFR HAVE -
C BEEN FGUND
C - S " -
c NORMALIZE THE VECTOR
T e pp 15 1T = 1.eNC T T -
15 RT(I,K) = RT(I, K)*XVAG
DO 1€ I=1,NRT A — . R .
16 S(I+K) = SC{I.K)*¥XNAG
RCOCE (K )™ 1d~ """~ ,
RK = le ‘
(8 "VECTOR FAS BEEN NCRNALIZED AND™ THEINCEPENCENCE [
. c INDICATOR HAS BEEN SEIT
- e e e -
c PREPARE TO START MAIN LGLP
KA=K 31 e s 3 b AP Ayt Al 1k bt S
c
C START WAIN’LCCP'CF"GRAM-SCHNICT'PRCCESSﬁ”“"P'W“””W -
DO 50 J=KA,NC '
- C " "FIND PREORTOGCNALIZED LENGTH CF, NEXT (JTH)- VECTCR o s s
XMAG=00T (IDIM,NR vSvJ J)
MY TETYST T e e e e A o e s e -
C L CCNTROLS TFE CGLBLC URTHCGCAALIZATICA
D 10 A1 L 142 " ) T
C K RUNS OVER THE PREVICULSLY LtTERMINED BASIS VECTCPS
T T DO 30 K = 1,JM1 ) T
c XIP(K) IS THE INNER PRCDLCT (F THE PRESENT (JTF) VECTCR
c “WITH THE KTH ORTHUNCRMALIZED VECTOF ~
30 XIP(K)=DOT(ICIMNRsSsJsK)
~~C T ORTHKOGONALIZE THE JTH VECTOR™ ™ 77 o T T T T
DN 40 K = 1.JM1 ,
R (¢ JIPACSENRID Qe I,NC e - e et e o e e o+

45 RT(I,d) = RTUIsJ) = XIP(K)*RT(I,K)*RCCDE(K)

DI &0 I=1yNR
S(I.J) = S(I,J) -X1P(K)*S(I,K)*RCODE (K)

i et e o i S i
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. RAK1
’ EXTERNAL FCRMULLA NUMBER =

TR0 T CONTINUE

c

- ¢
- C
C
42

43

70

51

s i e

52

" IT 1S SIGNIFICANT AT &C.

T XMAG =

FIND LENGTF OF JTF VECTCR AFTER GRTHCGCAALIZATICA

XIP(1)=DOT (IDIM4NRySsurd)
OETERMINE [F LENGTH IS SIGNIFICANT
IF (XIP(1)/XNAG=-TCL1) 42,4246C
IT IS NOT AT 427 °

DO 42 I=14NR

StIyJ 1=0

GO TO £C

RCOCE(J) = 1.

RK = RK + le

1«/SARTIXIPI(L)) ’

NCRMAL IZE THE CRTHGGCNALIZED VECTGR
70 I = 1,NC

RT(IyJ) = RT(I,JI*XMAG

(0]0]

D0 51 I=14NR

S(I,J) = S(I,J)*XNMAG

SCUFCE STATEMENT

02/1
" INTERNAL F

T

TIF T {RK- RAKK)'5O'523.¢
TOLL1 = 1l

59 CCNTINUE B T T
c COMPLTE RANK
RANK = C S h D -
DC 75 L= 1.NC

““~ 75 RANK = RANK "+ RCCOE(L)

RETURN

CEND T e e e e — —
U M I oonz e e e
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T EXTERNAL FCRVULLA NUMBER ~= ~ SGURCE STATEMENT

02/

T INTERNAL

SUBRCLTINE SVCAP (A4BsCyNsIRANK, IDIM, SCAF)

" DIMENSION SCAP(5C),

1, IRANK

B(L)

D0 5 L =
5 Vi(L) =

M3 E27% N
DO 45 L = 1,
o SCAP (L) = C
CO 46 M =

VEC (M)

=0
SCap (L) =

TTTTmTT T DD 46 M1 = 1, IRANK

46 VEC(M) =

T ) DO 45 M = 1,

VEC{5C), V1(50)"~ o T -
DIMENSIGN A(ICIM,IDIM), 8(ILIN), CUIDIM)
M3
ly IRANMK
SCAP (L) + C(NM) % VI(M)
VEC(M) + A(M,NML) #* V1(M])
IRANK o ’ '

45 V1i{M) = VEC(M)

I RETURN T - o T
END

13
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EXTERNAL FCRMULA NUMBER = SCURCE STATEMENT T = T T INTERNAL

—— e v e i v <

SUBRCUTINE MATINV ( A , AINV 4, CETA 4 N )
TUTTTTTTTT DIMENSION AC15,15)  AINV(1I5,15) oo T
~DIMENSION C(125) » wWAL(13) , WAZ(15)

|

l

H

:

o

<

i

-

G
]

1

p—
-

1 CONTINLE _

CaLL MINV ( C » N o CETA » hAL WA2 )

K=1

D0"27Jd =17+ N )
c

SRS, AU b0 2 1°=1 7N S —

T T T T AINVLT WYY = CLK)
K: K + 1

2 CONTINLE ‘
o e RE TURN e e e o B ] B - o
END o

S - R S B -




MINV1 02/

O 77T T EXTERNAL FCRMGLA NUMBER =7 'SCURCE STATENMENT = " INTERNAL |
O C SLBROUTINE MINV MI|
e G AN N e e
e C ) 000....0‘00.0.0.0...000000....0.Q.OOO.Q.OCOO..0.0.0.......0.0.0ooo'vxr
O C MI?
) —— C~_ L N MI!
C TTTTTPLRPUSE 0 T T - R R ~=- MI1
O ¢ INVERT A MATRIX MI
. ) c - ' ‘ MIt
. C USACE MI!
O C : CALL MINVIA,N DoLyM) T R D &
C MIt
(ol TDESCRIPTICN CF PARANETERS === P e - MI?
9 C A - INPUT MATRIX, DESTRCYED IN CCNPLTATICA AND REPLACEC ev MI!
" T C RESULTANT INVERSE. M
C N - ORDER CF MAIRIX A Ml
O e D - RESULTANT DETERNMINANT T BN §
” c L - WORK VECTCR CF LENGTH N ¢,
o “TMT="WORKVECTCR CF UENGTH™N ‘M]?
™ C M
e = "'C - REMARKS T e e T T e - T HI?‘
C MATRIX A MLST BE A GENERAL MATRIX MIA
C - c RPN i . — M I h
c SUBROUTINES AND FUNCTICA <bBFPCGRAMS RECUIREL M
C NONE ~ " e e M IN
™ c MIA
- c ~METFOD —- . S e s e S M
c TRE STANCARD GAUSS=-JUKRCAN METHCD IS LSED. THE DETERMINANT MIN
. C IS ALSO CALCULATED. A CETERMINANT "CF ZERC INCICATES THAT — ™I\
) C THE MATRIX IS SINGLLAR. : MIA
C - e .‘._\xu, Rt bt — s M xou
(\2 C 0.00.....O..............O.O...............OO...OO..O......O.O.....HIh
S c B —_— ~ MIN
SUBROUTINE MINV(A,NsCels¥) MIN
T T DIMENSION A(1),L{1)4M(1) S P §)
""" c MIN
C .«.J.w;:.‘...vc-........’.....0....00.0....0.0...........OCOOOOOOOOOCOOMIN
c MIN
I o """ If A DOUBLE PRECISICN VERSICN CF THIS RCULTINE 1S CESIRED, THE = MIN
C C IN COLUMN 1 SHCULD 8t REMCVED FRCM THE COUBLE PRECISICN MIN
N v "STATEMENT WHICH FCLLORS B o §)
C MIN
C DOUBLE PRECISION "AsC,BIGAHCLD - ——- MIN
c MIN
- C “YTFE C MUST ALSO BE RENCVEC FRCM DCUBLE FRECISICN STATEMENTS MIN
c APPEARING IN OTHER RULTINES USED IN CCANJUNCTICN WITH THIS MIN
C'_” RchINE. . - - o e e e - " - - e = SV - e v ean ,Hx'\(
c MIN
c THE DOUBLE PRECISICN VERSICN CF "THIS "SUERCUTINE MUST ALSC = = MIN
c CGNTAIN DOUBLE PRECISILN FGRTRAN Funcrxcns. £BS IN STATEMENT MIN
- cCc “1¢ MUST BE CFANGED T0 CABS. ST 7 MIN
c MIN
c 0.0...........0;‘;00000.......Q......‘..OOOO.l.‘................t IJ
c MIN
C SEARCH FOR "LARCEST ELEMENT ~— = =—mmeres S~ —— MEN
c ' MIN

115 . L N
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L MINV]
EXTERNAL FCRMULLA NUMBER = ~ SCURCE STATEMENT = ~ INTERNAL
i "I
NK==N M
T DO RC K=14N - . TTMI
NK=NK+N MI
oo LK) =K ) M1
M(K)=K MI
KK=NK+K MI
BIGA=A(KK) MI
e NO 20 J=K N - - T Y o
[12=N*(J=-1) M]
——— DO 28 I=KGN T _ R, - M1
[J=12+1 M
————107IFl ABS(BICGA)="ABS(A(TIJI})"15+2C32C M
15 BIGA=A(IJ) MI
e Y 2 1 e M
MIK)=J Ml
T 7720 CONTINUES T M1
c M1
C INTERCFANGE RCWS Mi
c MI
Tt T T J=L (K } T TTmTmT T M1
IF(J=-K) 35,435,2¢ M]
i o5 T2 KN - o e e M
DO 3C I=1,N M
KI=K I+N ) M1
HOLD=-A(KI) MI
JI=KI=-K+J B . - M1
A(KI)=A(JI) MI
" T30 AlJI) =kOLD T T T T - P
c MI
C INTERCHANGE TOLUMNS 7 ”1
o M]
357 I=MIK) T T M
IF(I=-K) 45,45,38 M
TTTTTTTTTT38 JP=N%(1-1)7 T T Ml
DO 4C J=1,N MI
JK=ENK+J ™
JI=JP+J MI
"HOLD==A{JK) o AR o |
A(JK I=A(JT) M1
LT 40 ALY D) =HOLD T - - T T T T T SR P 4
C MI
C CIVICE COLUMN BY MINUS™PIVCT {VALUE CFFIVOTELEMENTIS ~—m ]
c CONTAINEC IN BIGA) MI
—— , phEL A - R, Ml
45 IF(BIGA) 48,4€448 MI
TTTTTTTTTTT46 D=0.0 7 “' T T T M I
RETURN M
4870055 1= 17N —oRl
IF(I=-K) 50,55,5C NI
s 50 [KENKE] - _ IR
A(IK )=A{ IK)/(=BIGA) M
T T TSETCONTINUE T T T M1
c M
C RECUCE MATRIX M
C M

[ ¥ L B _ _ . A
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MINV]

- EXTERNAL FCRMULA NUMBER =~ = = SCURCE STATEMENT - INTERNAL F
TN 68 1= 1,N B EE——
IK=NK+ [ MIN

T e IJ:[-N - - T T T I "MIN
DO 65 J=1,N MIN

1d=1J+N MIN

Semm——— 60" IF{J-K ) &2 , éE ’ €2 T T e e - e ey e MIN
) 62 KJ=1J=1+K MIN
N ACTJI=ALIK)I*A(KJI)+A(IJ) MIN
65 CONTINLE MIN

o . MIN

C DIVIDE RCw BY PIVGT MIN
-.—._-—.-.-»c.,._........,....w . . T s - M lN
B KJ=K=N MIN
T T DD TS5 J=1,N - - MIN
- KJ=K J+N MIN
T IF(J=K) 7C,75,7C T MIN
70 A(KJ)I=A(KJ)I/BIGA MIN
IS TCDNT INUET MIN
o MIN
e PROCUCT OF PIVOTS ~ ~—~— ===~ - - TomomT o MIN
C MIN

- ) D= D* 8 l GA LT - T T - T - T M IN
c MIN

C "REPLACE PIVOT BY RECIPRCCAL™ MIN

c MIN
T T AKK )=1.0/7BIGA T T R B &
80 CONTINLE MIN

— NN
c FINAL ROW ANC CGLUMN INTERCHANGE MIN
L MIN
K=N MIN

TTTTTTTTL00 K=(K=-1) ) MIN
L IF(K) 150,15C,1CS MIN
T 10 S5 I=L(K ) o T T - - T B . )
IF(I-K) 1204120,1CE MIN

T 1087 UN=NE(K=-1) MIN
B JR=N*(1-1) MIN
T D") 1 10 J: 1 ,N e - - R M IN'

i JK=JQ+J MIN
T U T HOLD=A (UK ) o ) I TOMIN
JI=JR+J MIN'

ALK 1E=ATIT) M INT

110 A(JI) =HOLD MIN
=150 J2MEK) e e - - C MIN
IF(J-K) 1C0C,100,125 MIN'

125 KIZKN i0Usles — _ ; MIN'
DD 120 I=1,N MIN'

KI=KI+N 7777 - CMIN
HOLD=A(KI) MIN'
v I T MIN®
A(KI)==A(JI) MIN

130 A(JI) =HOLD T T T TTTTTTTTT T T OMIND
GO TO 100 MIN

"150 RETURN" R Rl MN“

i END M IN\
R & O e e
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EXTERNAL FCRMULA NUMBER - SCURCE STATEMENT = T INTERNAL

SUBRCLTINE CPC ( S 4 IKANK 4 B8 » C » DT )
"DIMENSION S(23,2C) 4, B(15) , C(15) 4 CCOF(16) H»RCCTR(15),RCOTI(15)

DIMENSICN RR(L1E) » RICLS) o T(15415) o TINV(15+15),XM(15,15)
CO 1 I =1 4 [RANK

(CCORUI) = =SUIRANK,I)

_1 CONTINLE

CCOF ( IRANK+1) = 1.

C

CALL MLLLER ( CCOF 4 IRAMNK » RCCTR , RCOTI )

— g

NNZRQ = O
TR B
C

DO~ 2 T =17 TRANK

C
T X = (ABS(ROOTICINIIZ(16E-T "+ TABS(RCCTRUIN )Y

IF ( X oLEo 1.E'7 , GU TO 3
TTIF ( ROOTI(I) +ECe Ce) GCTTC3

NNZRO = 'KNZRT+71
RR{NNZRGQ) = RCCTRI(I)

RITNNZRO)Y ="RCOTI(I} T
GO T0 2

3  CONTINUE
K~="TRANK™=J .
RR(K) = RGOTR(I)
RITK) = 0. : S
J=J+ 1
TTTTTTTTTTZCONT INUE T T T —

c

IRT="NNZRC /727 ' e
WRITE(NWR,1CO0) (I ,4KCCTR(I) , RCCTI(I) o I 1 » IRANK )

TTTTTTTTTIO0 FORMAT U/ /7 Ty T IX Ty 33HRLCT T T REALTPART T CMFELX PART —3 /7y i
i ( 5X o IS 4 3X 4y ELSeE » 3X 4 El5¢8 ) 1}

T T UWRITE (2,101) NMNZRG T T
101 FORMAT (ZX,27H NLMBER CF CCMPLEX RCCTS = » I5 4 /7 )

T
IF (IR oEQe C ) GC T0 7

D0 5 J =1, IR
SR = 2%y =1 : USRS
IX2 2%J
17 IXTT %135 — -
T(1,IX2) = Ce
c ——— . — S
5 CONTINLUE

o,

——

DO 4 I = 2 4 IRANK

C
DO € J = 1 » IR '

8
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RNAL FCRMULLA NUM3Ex ~ =" "SCUFCE STATEMENT =  INTERNAL F

- R . . e
) Jl1 = 2%y -1
J2 = 2%y o ' -
L T(1,41) = RR(JL)® T(I-1,J1) = ABS( RI(J1) ) ¥ T(I-1,42)
T(1,Jz) = RR{JL)* T(i=-1,42) + ABS( RICJ1) ) * T(I-1,J1)
c _
e CONTINUE: = = e e e o e e e
c
- 4 CONTINLE
C
—— 7 CONTINLE . o R B
IF ( NNZRO oCEe IRANK ) GC TC 24
e g et e TS S -
o M1 = 2 % IR + 1
c
o DO 8 I = M1 , IRANK
— b o R e e . _
DO 9 J = 1 4 IRANK
o
T(dy1) = RRUI )#%(J=1)
; c = RRAL -~ e R _
. 9  CONTINUE
c - o . e ~ e
8 CONT INLE
c it
o 24 CONTINLE
C7777 CALL MATRIX INVERSICONT
c

" TCALL MATINV ( Ty TINV  DET ¥ TRANK")
DO 10 I = 1 » IRAMNK

ROQTR(I) = C
DO 1CJ =
L XM(I,d)
T TTTTTTRGCTRUI

c

CO 107K = T » IFANK
C
S T e M (e d) = XML TSI K TR UKy -
C
T - 10 CONTINLE
DO 11 I=1 » IRANK

R ROGTI(I) = Co
T D0 11 d = 1y IRANK T

—————— . StIyd) =C
“ROOTI(I) = RODTICI) + TINVII,J) * BUIN-

£0 TI-K—= 17 TRANK

- S(Ied) = S(I,a) +  TINVIIZK) ¥ XFIKyJ])

11 CONTINLE

T WRITE (NWR,1C4)Y T 777 T T
WRITE (NWR,1C2) (RCGTR(I)sI=1yIKANK)

WRITET(3,102)7

WRITE (2,112)

119 e S e e et e e




R 1 %P 02/
EXTERNAL FCRMLULA NUMBER = SCURCE STATEMENT - " “INTERNAL

TTTTTTTTTTUDOT 1z 1= 1y TRANKS SR '
112 FORMAT SoH ccprr&o REAL LIAGGNAL FCRM FCR CISCRETE SYSTEM)
WRITE (2,102) (S(1,4)7y J7= LyIRANK) ™7 77 S

o 12 CONTINLE

e RGN INGE s e e e
WRITE (NAWR,1C5)
WKITE (NWR.1C2)TRCGTI(T )Yy T=17IRANKT™
WRITE(Z,1C3)

TTTTTTUTI02 FORMAT ( ¢EzCl.8 )T T
103 FORMAT ( /)
- o - e e
IF ( NNZRO oGEe IRANK ) GC TC 2%
DOTI3 I '="MT 7y "TIRANK -
c
e e L g =1 TRANKTTTT T e . e e
C
e S U1 J) & Qe e
C
1% CONTINUE
o S(I,1) = ALOG ( ABS ( KR(I) ) ) 7 OT
c- ) nys e
13 CONTINLE
e R , S . . I
IF (IR +EQe C ) GC TC 17
C
25 CUNTINLE
B DO 15 I = 17, IR™ T — T T E—
c
AT I i B _ _ e
J2 = 2 * 1
(o - . - l - T
DO 1€ J = 1, IRANK
c T v ‘ _ . e e
o S{JlsJd) = Co
e U 2 ) e O T .
C

16 CONTINUE

U ALCG U SORT { RRUJIV ™ #%2+ RI(J1I*32 170 )/ cr
S(JlyJ1l)

StJ1,J1)
S(J2442)

e g y1,dz) = ATAN2(ABSIRI(JZ))HRR(J21)/DT” ) e
15 S(J2,J1) = = S{JlyJd2)
IT77WRITE(Z,104) -
WRITE (NAR,1C02) (RCGCTR(K) ok=1,IRKANK)

) o

—"TTT104 FORMAT (/7 v 21H  CUTPUT CCEFFICIENTS

WRITE (32,1C¢€)
o “TT106 FORMAT (/4 5Xy 4CHCCNTINUGLS "SYSTEFTIN' REAL"CIAGCNAL FCRM )}~ = 77

DO 18 I = 1 » IRANK

C
NRK T?n(f_\l.\\R‘_vICZ) { S(IyeJd)ed=1slFANK)

e g
18 CONTINLUE :
TTTTTTTTUTTTRRITE (F, 102 T CoTTTTTTrTTe e
WRITE (3,10¢%)
105 FORMATUZOH —INPUT CCEFFICIENTST)
HRITE (NNR,IOZ) (RCOTX(K):K l,IRANK)

e e A




02/]

c e e e e e —
') DA 16 I = 1 » IRANK
“c e e . _
o TINV{1.,I) = RCCTIR(I)
' 777719 CONTINLE ‘ S
c
e e 0 20 T = 27y TRARK = = mms o e e e
® c
DO 2C J = 1 » IRAMNK
c
o T OTINVIINY) = C .
c
e e e 2 07K ET T “TRANK e e e e e e e
O C
’ TINVII,J) = TIN(I,J) ¢ TINV(I=1,K) ¥ S(K,sJ)
o
7T 20 CONTINLE - T ST T e T T T
o
ST UUCALLTMATRIXTINVERSICN
c .. ¢c
o CALL MATINV ( TINV T 3 DET  IRANK )y 77 7 -
DO 21 I= 1 4 IRANK ;
o el = Ge I e . o
DO 21 J = 1 » IRANK
c L
C e N XM(IQJ) = 00
T etDY = CUI) ¢+ RCOTRUJY 7 TCSIy—— T -
c
N T T T a0 2zl K =1, TRANK DT - o
o
YMTTVIT = XN I+ SUThK) " * TUKyJ)
™ c
© T 21 CONTIINLE
c
TR0 22 1T=T17 4 IRANK
c
B(I, = Qe
_____ c
DO 22 4 = 1, IRANK -
TSI LYY = Ce T N
B(I) = B(I) + TINII,J) ¥ RCCTICJ)
CO 2z K= 1 » IRARK

e crPC1
EXTERNAL FCRNULA NUMBER ~~="""SCURCE STATEMENT ~ =" -INTERNAL f

= S(Iyd) + TINVIINK) * XM(Kk,J)

w
-
—
-
[ 25
-
#

22 CONTINLE

C
WRITE (3,104)

T UUWRITE INWR,1€2) THCUI) wI=1 4 IRANK]
WRITE (3,1C7)
107 FORMAT (/,5%,37H CCATINUCL
DO 23 I = 1 » IRAMK

S SYSTEM IN COFPANICN FURM™Y

C
M.WR>¥T“EM(NNR91CZ) (S(IvJ)nJ‘lsIRAhK)

2121 e e
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L CPC1 o
EXTERNAL FCRMULA NUMBER -

A _ 02/1
SCUKCE STATEMENT ~ "=~ ~"INTERNAL F:

c e e e e e o e i e et e = —

™ 23 CONTINLE L
TTTUTTUWRITE (3,102 T ) o

WRITE (3,1C%) | ;
') ) h WRITE (NWRyL1C2) (BUI1),I=1,IRANK) "= 7 770 mmmmme s e T
“."(' c ’

RETURN -
O o ENOD . _ e _ -
{'"\
O _ B -_ ] e
{_\ _ . _ e e -
5 o R
O o T T o

e o122 e .




e MULL1 02/
EXTE AL FCRMULLA NUMBER = 7 SOURCE STATEMENT -‘“'INTERNAf

e

e o mn e o e A e e Cem s eni e meimmser o iss s RUNPISORUPUE P LRV

SUBRGUTINE PLLLER(CLtvi\l FCCTR,RCOTI’ HF

C MULLER - —
A DIMEP\SION COE(lé)oKuCTK(l5),FCCTI(15) ki

c ) COEFS IN CRDER CF II\CRtASU\G PCWERS OF I

NUP = ( N1 + 1 )/ 2
e 50 26 [ = 1 4 NUP e et e e e et o i
J =Nl + 2-1
e e Gy 2 COE(T) . e e e e e e e o e s b e
COE(T) COELJ)
20°COE(J) ="CSV ‘ - -
N2=N1+1
R Na= O B : S - e
[=N1+1
T 19 TF(COE(T) ISy 79SS
7 N4=N<+]
ROOTR(N&4T=Cos
ROOTI(N4)=C.
B TS P | oo - T bF

IF(N4=N1)19,37,19
—T T g CONT INLE T T - T T
10 AXR=Ce € -
AXI=T. ) B
L= 1 FF
32 - R m, _ .
ALP 1R=AXR Ff
e ALP1I=AXI " R . . e b
M=1 FF
GU TU t;g N T T i’F
11 BET1R=TEMR b
RET1 I=TEMI - HF
AXR=Co. €5 FF
T T ALP2R=AXR T HE
ALP2I=2XI FE
M=2 “HF
GOTOSS "
12 BET2R=TEMR THE
BET2I=TEMI FF
e s C e e N""AXR: C. C‘ - - ee— - . o e t_F
AL P3R=AXR -
ALP 3 I=AXI e
M=3 HF
T GU ]‘O qq T T T PF
13 BET3R=TEMR FF
T SET3I=TEMI . , e R
14 TEL=ALPIR-ALP3R .
TE2=ALPII-ALP3I — bF
TE5=ALP2R=-ALP2R P
TE6=ALP3I-ALPZI ™ N o
TEM= TES*TES+TE6*TEE FF
— = TE3= (TE1XTES4+TE2# TEC) /TEM -
TE4=(TE2*TES-TEL1*TEG6) /TEM
TET=TEZ+1% FF
TE9=TE3*TE3-TE4*TE4 HF

123 e o e
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MULL1

""" T EXTERNAL FCRMULA NUNBER = ~SCURCE STATEMENT

02/1

- INTERNAL F

TE10=Ze%TE3%*TE4 - - - pPR
DE15=TET*BET3R-TE448eT31 KPR
e e e 6= TET*BETZ T+ TE4#BET3R - S - S s DR
TEL1=TE3*BETZR=-TE4*BETZI+B8ETLIR-CELS RPR
s TE12=TE3*BRETZI+TE4*BETZRBETLII-CELS FPR
TET=TES~-1, FPR
T YE 1= TEGKXBET 2R - TE1IC*BETZI ™ T mmm——— o e s PR
TE2=TES*BETZI+TEL1C*BETLR FPR
o TEL3=TEL-BETIR-TE7#BET3R+TELC#BET3I FPR
TE14=TE2-BET1I-TE7¥BET3I-TELC¥BET3R FPR
TE15=DE15*TE2=DE1é%Tc4 FPR
TE16=CEL5*TE4+DEL1E*TE3 FPR
e £ e 1o TE13%TE13-TEL14% TE14=4. % (TEL1*TE1S-TE12¥TEL6) ™ < KPR
o TE2= 2 o*TE13#TEL4~4e*(TEL24TELS+TELLI*TELG) FPR
B TEM = SORT(TEL*TEL1+TE2%TEZ) — o

IF(TE1)112,1132,112 HPR
T 113 TEG=SORT( 4 5F(TEM=TEL) )™ T T ST e e
TE3=.5%TE2/TE4 FPR
TTTTTtTTTUgo TC 11T T FPR

112 Tc3-SORT(.5*(TEH+TEl))
R IF(TEZ)110,2CCr2CC R
. 110 TE3=-TE3 FPR
T an) TE4= #5*TEZ/TE3 T T T T T FPR
111 TF7=TE13+TE2 FPR
TEB=TE14+TE4™ “HPR
TE9=TE13-TE3 FPR
T T TEL10=TE14-TE4 o - A T EPR
TE1=2.*TE 15 FPR
T TE2=Z2.*TE16 T T - FPk
IF(TE?*TE?+158*1EE-1t9#Tc9-TE10*TE10)204,2C4.205 FPR
TTTTTTTT204  TET=TES +PR
TES=TELC FPR
U205 TEM=TET#TET+TEERTEE FPR
TE3=(TEL1*TET+TEZ*TEE) /TEW FPR
TE4={TE2*TET-TEI*TEE) /TEWV PR
AXR=ALP3R+TE2%TES=TE4* Tt FPR
AXT=ALP3T+TEZ*TEECHTEA¥TES FPR
ALP4R= AXR KPR
TALP G I=AXI T T T “HPR
M=4 FPR
T ’ Gj TD gg T T FPR
15 N6=1 FPR
38 IF(ABS(HELL) +ABS(BELL)I=1eE-2C)1€+18+16 — :

16 TE7=ABS(ALP2R=AXR)+ABS(ALP3I-AXI)

—————=" IF(TE7/(ABS{AXR)+ABSIAXI))-1.E=-7)18718717 -
17 N3=N2+] FPR
e ALP leALp ZR T ’ T . - "pR
ALP1I=ALPZI FPR
ALP2R=ALP 3R - HPKR
ALP2I=ALP 31 FPR
T T U ALP 3R=ALP 4R T T T "HPR
ALP 3 I=ALP4&I FPR
T T 8 ET1R= BET ZR e T T T T +PR
BETLI=8ET2I RPK
BET2R=BET 2R e PR

BET2I=BET3I

124 e
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MULL1

-~ SCURCE STATEMENT

g2/l
"=~ T INTERNAL F

T EXTERNAL FCRMULA NUNBER
e B ET3R= TEMR e S o e BPR
BET3I=TEMI FPR
T CIF(N2=100)14,1€,18 - “FPR
18 N4=N4+1 FPR
ST RL‘JUT'R(I\G):ALPéR o TTmmemT o FPR
ROOT I(NG)=ALP4I FPR
e 13200 g o e e oo e st s o et e o e DR
41 [F(N4-N1)20,27,37 +PR
- © 37 RETURN HPR
30 IF(ABS(ROOTI(NG))=1eE~S5)10+10,31
T 31 60 TC(zZ2,10),L— ~ T T - hR e &
32 AXR=ALPIR FPR
AXI==ALP1T S - kPR
ALP1I==-ALP1I FPK
- M=5 e - - - e - HPR
GO TO ¢S FPR
- "33 RBRETI1R= TEMR 7 - e £
RET1I=TEMI FPR
“AXR=ALP 2R’ == FPR
AXI==ALP21 FPR
T . AL PZI="ALPZI Crm mmmmmmmm T T - - T BPR
M=6 FPR
T GO TO ¢SS . i B FPR
34 BET2R=TEMR FPR
BETZ2I=TEMI e © HPR
AXR=ALP3R FPR
TAXI=-ALP3I” o T T BPR
ALP3I==ALP2I FPk
e [ D T e e . e~ RPR
M=3 FPR
e o9 9 TEMR=CCE(T) R - = FPR
TEMI=0,.0 FPR
T I DN 10 CI= 1, N T T T - T T o RPR
TEL=TEMR®XAXR=TENMI*AXI] FPR
s TEM [ =TEMI %A XR+#TEMR¥AXLT = e e e PR
100 TEMR= TE1+CCE(I+1) PR
THELU=TEMR™ T © FPR
BELL=TEMI FPR
a2 CIF(INGYIC2,1C32,1C20 T T T R o o
102 DO101I=1,N4 FPR
s 0 TEM1=AXR=ROOTR(IY 77 - e
TEM2=AXI-ROCTI(I) FPR
TE1=TEMIXTENI#TENZ2¥TEMZ PR
TE2=(TEMR*TEM1+TEMI*TENZ)/TEL FPR
————  TEMI=(TEMI%TEM1-TEMR¥TEMZI/TEL R of £
101 TEMR=TE2 . EPR
——103° GO TO(11;12712715y33,34)V I S ot
END
i 125 o . a - o




— "7T77T'NUMBER OF CGMPLEX

o,
I “TOLERANCE = "Co.CS5S5SSSSE-C4 T SRRt
INPLT VECTOR
» 7.11CCCCCOE €2 CeG40871ClE C1 0.61650250E 01 07310235
- L 04633205S1E C1 OecS52116G5E C1 0e69719G75E 01 067702636
\ T 31163025567 C2 T T Cel42(6473E C2 7T T 0017052747 02 02056340
o 0.36871470E (2 Coe4949243851lc C2 0e547813J4E 02 06683623
< 0el12159Z271E C2 Cel4d4E0S3E (3 De1813273GE 03 062214515
\ . » 0e4N345355E (3 Ce4527€S2GE €3 0460186163E 03 0.73510€7
O 0e133G4281E (4 Col635SSC4E C4 0415582008E 04 ’
S KM 1= 18
~ o , . o e i
- ESTIMATEC VECTGR
e 5 U105 6GG6SE T (2T T 0. 54087CSTE TGl 0,81950239E- 01—~ 0,7210233
S, 0.63320526E Cl Ce65211€61CE (1 0669719867E 01 0e7702622.
- 0e11920226F €2 " Cel420C€438E C2 " -0417CS2T03E 02 ~ "~ 02058335
0.36871376E (2 C.44924778E C2 0.54781169E 02 046683612
O  0412159240FE €3 77T Cel4B843015E €3 T 0ll8132695E 03 7 0.2214510
0.40345258E €3 Ue4G276861E C3 0.60186017E 03 Oe 735107&
T TG 1336434 BE (4 ~Cs1E35SEE4E "C4— "~ o
™
L VECTOR FRCM COMPANICN FCRM CPERATION
T? T T IL0COCO1E €2 T T T CeG4CET11TE Ol T T T 0e81950256TE 01T T 06721023
o 0.63320¢77E (1 Jeb652118l6E (1 0e63720145€ 01 07702659
TTTTTTTTTTTT0.1193204CTETC2 Cyl4Z0€E41E"C2™""0417C52833E 02— 0.,205€351"
A 0e36371€6GSE (2 Ce44325lolE C2 0.54781672E 02 0.6683675¢
N T 06 121592¢5E8 C2 T T T Tl 14845171E7C3 ~—0el313288GE 03 " " 062214534
) 0.40345725E (3 O0e452117354E C3 0.60186742E 03 0.73511¢&C.
ST T 301336458238 C4 T TTTCL1636CCBIETCGTT T T T mo
\ ) OLTPUT COEFFICIENTS
T T 0 095 SSS9GE C1 T T Te 23841 E5EE=CEHT
SYSTEM MATRI X
T T T 0023841 E58E=-C6 T Ce$S95557EETCO -
~0e53656688E CC Ce2C4C1l334E C1
T I T INPUT O COEFFICIENTS - - R
0. 109<99995 Cc2 0. 94c&7csee 01
. ROOT REAL PART CMFLX PART
- T} T 0. EBlET30%3E CCOTTT=Ce - - e b e e
2 0e 1221402SE (1 =Ce 126
RCCIS =7~ ~¢ —‘ o T o



o O

O

)

QUTPUT COEFFICIENTS

Preses

= 3.0535GGG9E €1 ~ T CeCSSSSSSSE €L T T T

~———""" CGMPUTED REAL CIAGONAL FCkM FCR CISCRETE SYSTEV S
 0.12214C28E (1 -C.253C2322E=CT7
ST T 0,596 C4€45E=CT T T T (WBLET3CS5E (O B - : -
—INPUT COEFFICTENTS
 0.10C0C43E €1 CeSSSS5545E OL
. OUTPUT COEFFICIENTS
ST 0,999 56699E T CTTTT T CL0S3SSSSSETCLT -

T o eGNTINUOLS SYSTEM IN REAL CIAGUNAL FCRM

0200C0C14E C1 Ce

T 0. | TTTTT=(.2C0C0C27ETCL -
————"INPUT COEFFICTENTS
 0.100C0C43E C1 (e 55555546GE 01
~TTTTTUQUTPUT COEFFICIENTS 7 77 T o o
0.0G5SSSSSE C1 -Ce
CUNTINUGLS SYSTEM IN CGMPANICN FCRM

sy (149 C1161E-C7 T T €e 86655655 00 T

O.4OOCOC85E7C1 -Cel25€4CLCE=-C5

INPUT COEFFICIENTS
0. 105¢S8CSGGE T2 ~=C, 18CCCCCTIE- C2 7o e e e
THIS REAL IZATICN IS SUCCESSruLs ALL CCEFFICIENTS HAVE BEEN MATCHEC

- 27



exponential. Our justification for this is again the assumption that the
§ wused to generate ¢ was smaller than half the smallest natural period
appearing in the spectrum of A, -

3) Companion form.

An nth order matrix A is said to be in companion form if

a; 441 =1

the characteristic polynomial of A 1is

n-1 j
an,j+1x ’

= +

j=o

and all other ay besides the last row and the first upper diagonal,

j’
are zero.

It is easy to show that if the matrix

is nonsingular, i.e. if [H, ¢) is completely observable, then
gst = [1, 0, ***, 0]
and Sd>S-l is in companion form.

Appendices: Attached are listings of a main program to call CPC, the
data used by that main, and the output from CPC produced by that data.
Listings of CPC, MULLER, MATINV, and MINV appear in

APPENDIX B - MICARE.
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s TIVEKRSION S{15:15)3(15),C(15) T T s e e e e -
| c THIS JS Trt MAIN FB8R CPC=- k IS5 IRANK
EL Tl oI o e - I B S . - ~ _—
1 READ 100.,%x.DT
e CREADTIOL. (B SI=1 KIS (T3 T=T3K) - T e 4 T e e
READ 101 ((S(IaJ),J=1sK)el=]eK)
e R INT 102 T T } . B}
T3 10 1=1,K

s = B R INT I3, (ST Y g d=1 K T
. ~ PRINT 108 ‘
"? T TONTINUE S

‘ PRINT 10&
Sy e PRINT 104, TSI S I KYT
) BRINT 105, (C(1)s]=1.K)
Sheom e PRINTIO7L DT
'\\ caLL CPC (S,neEHLC,DOT) . . )
D ~—
1NN FERIMAT (110,E20.8)

Ty FRRMAY (SEV14.8) T T T T - T T T - N
102 FIRMAT (23X¥,14rINPUT MATRIX S »///)

TR OFIRMAT TMIFEE2QURYTTT
1N4 FARMAT (15FQINPUT VECTBR B,1P4E20.8)
e e e KT F R RMAT T U TEFOINPUT VECTRR T, 1PAE20E)
1N7 FARMAT ( 3I+QLT LIFE20.R)
T UANARTFBRMAT TUIRT) N T T
FND

37T
.C025037473  .9735 -3.85 1. e
- o 4 . — e e
0 1 e 0 e e e ——————— _,_04_ ———— - r— . = ————
T T T T =13.4.096271 <15.948172  =h.7666062

St e e -
: N g ED T T L YE R T
pa. - —— s
s —r———— - -
o~ -
- —ea s - .
- s PP, —
-
- - S e s e e e e . e e i A e —— .




INPUT MATRIX § o
e 1 0000000E 00 1.00000000E N0 .00000000E 6O
e — _000000U0E 00T .0A0N0N000E 00 T T 1.000000G0E 00 .
- R e e e e e 5
{ PR T YA T IS STTEOAEY Y2 0E A ~6.76690620E700

‘{Ww*TKPUT“VECTOR“E—_____§j5ﬁ37K73hE;DK_-

e - = samn

1.06000000E 00 .00000000E O

T TINPOT VFCTER C

“W——HMMMMDT~MP'M'"1:000000065w00w"i

T 9.73500000E-01  =3.85000000E

-]
4
|

o

00!

. 00066000E 00

ROOT REAL PART __ _ CMPLX PART N
1 -.22011641&t 01 LB3P70654E 0O |
? °.?2ﬂll6dlE plw___-{SB?]OéFdEMOQ_W - Awwwww-_j
T wdf“”w’:;?364578b5‘01'~ -,89088780E~17
NUMFER OF COMPLEX RBBTS = 2 -
T TTTTTTBUTPUT CBEFFICIENTS S T . o
. 10NCNO00E 01 .00000000E 00 . 10000000E Gt
SAVPUTED REAL DIiAGONAL FORM FOR DISCRETE SYSTEM
-.22011641E_Q 1 .B3270654E 00  «23283064E=0G _ .
- . RIZ270654E N0 =.22N11641E 01 -.30550022E=-06
-,03132257E=09 -, 11641532E-09 f,2§64578Q§_Q1 o
130 _ e o




INPUT COEFFICIENTS

GUTPUT COUEFFICIENTS

.RS8RA3GGE N0

\ ) .N00000ONOE N0

\ h PiLtenNs _ N
F; S1N00N000E 0t .CONONCO0E NO
“IX““' T CANTINUBUS SYSTEM IN REAL DIAGONAL FORM

T a.2779G2G65E a1t .A5586399E 00

< ROY7R80GE Q0 T T 12682055ET AT T, 62426183E 00

.27796295E nt

-00000000E 00

TT,10000000E 0t

.00000000E GO
.00000000E CO
.86056955E 00 o

e e i s am e i e e s ]

e LT CBEFFICIERNTS e
 -.A2175BOGE 00 .12982055E 01 = .62426183tE 0O __ B

GUTPLT CGEFFICIENTS B
_1p00000CE_ 01 .90949470E=12  -.,90949470E-t2
- CBNTINUBUS SYSTEM IN CEMPANIGN FORM

-.3837Q7RBE=-10

T .nononancE oo

- 10N00000E 01
-.15461410E-10

SToETIVO3E 01

INPUT COEFFICIENTS
«25037472E~-02

-.69336237E 01

«36140188E 01

«10989349E 02

-.9094G470E=12
. 10000C00E C1
.25723275E701

|

b
%
s o snmom - Sarreorearont e resoromer o e B m

i
13 —




